Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).
Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).
Lininger, A. et al. Chirality in light-matter interaction. Adv. Mater. 35, 2107325 (2023).
Riso, R. R., Grazioli, L., Ronca, E., Giovannini, T. & Koch, H. Strong coupling in chiral cavities: nonperturbative framework for enantiomer discrimination. Phys. Rev. X 13, 031002 (2023).
Mayer, N. et al. Chiral topological light for detection of robust enantiosensitive observables. Nat. Photonics 18, 1155 (2024).
Jiang, C., Baggioli, M. & Jiang, Q.-D. Engineering flat bands in twisted-bilayer graphene away from the magic angle with chiral optical cavities. Phys. Rev. Lett. 132, 166901 (2024).
Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).
Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801 (2013).
Yang, Y., Correa da Costa, R., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634 (2013).
Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).
Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).
Jalas, D. et al. What is-and what is not-an optical isolator. Nat. Photonics 7, 579 (2013).
Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577 (2016).
Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017).
Valencia-Tortora, R. J., Pancotti, N., Fleischhauer, M., Bernien, H. & Marino, J. Rydberg platform for nonergodic chiral quantum dynamics. Phys. Rev. Lett. 132, 223201 (2024).
Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photonics 16, 380 (2022).
Antoniadis, N. O. et al. A chiral one-dimensional atom using a quantum dot in an open microcavity. npj Quantum Inf. 8, 27 (2022).
Joshi, C., Yang, F. & Mirhosseini, M. Resonance fluorescence of a chiral artificial atom. Phys. Rev. X 13, 021039 (2023).
Owens, J. C. et al. Chiral cavity quantum electrodynamics. Nat. Phys. 18, 1048 (2022).
Söllner, I. et al. Deterministic photon emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).
Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).
Hurst, D. L. et al. Nonreciprocal transmission and reflection of a chirally coupled quantum dot. Nano Lett. 18, 5475 (2018).
Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light.: Sci. Appl. 9, 139 (2020).
Wang, S. et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics 10, 5700109 (2018).
Wang, Y.-P. et al. Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics. Phys. Rev. Lett. 123, 127202 (2019).
Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).
Zhang, C. et al. Nonreciprocal multimode and indirect couplings in cavity magnonics. Phys. Rev. B 103, 184427 (2021).
Yu, W., Yu, T. & Bauer, G. E. W. Circulating cavity magnon polaritons. Phys. Rev. B 102, 064416 (2020).
Bourhill, J. et al. Generation of circulating cavity magnon polaritons. Phys. Rev. Appl. 19, 014030 (2023).
Yu, T. et al. Magnon accumulation in chirally coupled magnets. Phys. Rev. Lett. 124, 107202 (2020).
Yu, T., Zhang, X., Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Chiral coupling of magnons in waveguides. Phys. Rev. B 101, 094414 (2020).
Ye, X., Xia, K., Bauer, G. E. W. & Yu, T. Chiral-damping-enhanced magnon transmission. Phys. Rev. Appl. 22, L011001 (2024).
Fan, Z. Y., Zuo, X., Li, H. T. & Li, J. Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity–magnon coupling. Fundamental Res. https://doi.org/10.1016/j.fmre.2025.02.012 (2025).
Wang, Z.-Y., Qian, J., Wang, Y. P., Li, J. & You, J. Q. Realization of the unidirectional amplification in a cavity magnonic system. Appl. Phys. Lett. 123, 153904 (2023).
Qian, J. et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Appl. Phys. Lett. 116, 192401 (2020).
Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).
Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015).
Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).
Mahmoodian, S., Lodahl, P. & Sø rensen, A. S. Quantum networks with chiral-light-matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).
Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).
Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum state transfer via noisy photonic and phononic waveguides. Phys. Rev. Lett. 118, 133601 (2017).
Anderson, B. M., Ma, R., Owens, C., Schuster, D. I. & Simon, J. Engineering topological many-body materials in microwave cavity arrays. Phys. Rev. X 6, 041043 (2016).
Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).
Ra’di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).
Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).
Wang, C. Q., William, R. S., Stone, A. D. & Yang, L. Coherent perfect absorption at an exceptional point. Science 373, 1261 (2021).
Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351 (2019).
Slobodkin, Y. et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science 377, 995 (2022).
Aeschlimann, M. et al. Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Photonics 9, 663 (2015).
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
Müllers, A. et al. Coherent perfect absorption of nonlinear matter waves. Sci. Adv. 4, eaat6539 (2018).
Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).
Rao, J. W. et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics. Nat. Commun. 12, 1933 (2021).
Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).
Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).
Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971 (2018).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).
Mechelen, T. V. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118 (2016).
Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).
Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448 (2015).
Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1 (2015).
Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Nat. Photonics 9, 796 (2015).
Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67 (2014).
Hallett, D., Foster, A. P., Whittaker, D., Skolnick, M. S. & Wilson, L. R. Engineering chiral light-matter interactions in a waveguide coupled nanocavity. ACS Photonics 9, 706 (2022).
Rodriguez-Fortuno, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328 (2013).
Luo, S., He, L. & Li, M. Spin-momentum locked interaction between guided photons and surface electrons in topological insulators. Nat. Commun. 8, 2141 (2017).
Söllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).
Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).
Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903 (2014).
Chiasera, A. et al. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4, 457 (2010).
Bliokh, Y. K. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).
Liu, J. F. et al. Spin-controlled reconfigurable excitations of spoof surface plasmon polaritons by a compact structure. Laser Photonics Rev. 17, 2200257 (2023).
Liu, J. F., Wu, J. W., Fu, X., Tang, W. & Cui, T. J. Arbitrary polarization syntheses based on spin-momentum locking in spoof surface plasmon polaritons. Adv. Optical Mater. 11, 2202618 (2023).
Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004).
Francisco, J. et al. Spoof surface plasmon photonics. Rev. Mod. Phys. 94, 025004 (2022).
Maier, S. A., Andrews, S. R., Martin-Moreno, L. & Garcia-Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).
Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74 (2000).
Yu, S. Y. et al. Critical couplings in topological-insulator waveguide-resonator systems observed in elastic waves. Natl Sci. Rev. 8, nwaa262 (2021).
Yang, Y. et al. Anomalous long-distance coherence in critically-driven cavity magnonics. Phys. Rev. Lett. 132, 206972 (2024).
Ma, H. F., Shen, X., Cheng, Q., Jiang, W. X. & Cui, T. J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146 (2014).
Gloppe, A., Hisatomi, R., Nakata, Y., Nakamura, Y. & Usami, K. Resonant magnetic induction tomography of a magnetized sphere. Phys. Rev. Appl. 12, 014061 (2019).
Xu, J. et al. Slow-wave hybrid magnonics. Phys. Rev. Lett. 132, 116701 (2024).
Han, Y. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).