Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Inouye, D. W. Climate change and phenology. WIREs Clim. Change 13, e764 (2022).
Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).
Robertson, E. P. et al. Decoupling of bird migration from the changing phenology of spring green-up. Proc. Natl Acad. Sci. USA 121, e2308433121 (2024).
Belitz, M. W. et al. Potential for bird–insect phenological mismatch in a tri-trophic system. J. Anim. Ecol. 94, 717–728 (2025).
Culp, L. A., Cohen, E. B., Scarpignato, A. L., Thogmartin, W. E. & Marra, P. P. Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere 8, e01565 (2017).
Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 2467–2473 (2018).
Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B 278, 835–842 (2010).
Iler, A. M., CaraDonna, P. J., Forrest, J. R. K. & Post, E. Demographic consequences of phenological shifts in response to climate change. Ann. Rev. Ecol. Evol. Syst. 52, 221–245 (2021).
Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B 277, 1259–1266 (2009).
Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B 365, 3177–3186 (2010).
Lameris, T. K. et al. Migratory birds advance spring arrival and egg-laying in the Arctic, mostly by travelling faster. Glob. Change Biol. 31, e70158 (2025).
Rakhimberdiev, E. et al. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat. Commun. 9, 4263 (2018).
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
Lameris, T. K. et al. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23, 4058–4067 (2017).
Amaral, B. R., Youngflesh, C., Tingley, M. & Miller, D. A. W. Shifting gears in a shifting climate: birds adjust migration speed in response to spring vegetation green-up. Divers. Distrib. 31, e70033 (2025).
Conklin, J. R., Lisovski, S. & Battley, P. F. Advancement in long-distance bird migration through individual plasticity in departure. Nat. Commun. 12, 4780 (2021).
Visser, M. E., Perdeck, A. C., Van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15, 1859–1865 (2009).
Nuijten, R. J. M., Wood, K. A., Haitjema, T., Rees, E. C. & Nolet, B. A. Concurrent shifts in wintering distribution and phenology in migratory swans: individual and generational effects. Glob. Change Biol. 26, 4263–4275 (2020).
Alerstam, T. & Lindström, Å. in Bird Migration (ed. Gwinner, E.) 331–351 (Springer, 1990).
Hedenström, A. & Alerstam, T. How fast can birds migrate? J. Avian Biol. 29, 424–432 (1998).
Lindström, Å., Alerstam, T. & Hedenström, A. Faster fuelling is the key to faster migration. Nat. Clim. Change 9, 288–289 (2019).
Evans, S. R. & Bearhop, S. Variation in movement strategies: capital versus income migration. J. Anim. Ecol. 91, 1961–1974 (2022).
Boom, M. P. et al. Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. Oecologia 202, 287–298 (2023).
Lameris, T. K. et al. Nocturnal foraging lifts time constraints in winter for migratory geese but hardly speeds up fueling. Behav. Ecol. 32, 539–552 (2021).
Dokter, A. M. et al. Body stores persist as fitness correlate in a long-distance migrant released from food constraints. Behav. Ecol. 29, 1157–1166 (2018).
Prins, H. H., Th & Ydenberg, R. C. Vegetation growth and a seasonal habitat shift of the barnacle goose (Branta leucopsis). Oecologia 66, 122–125 (1985).
Ouwehand, J. et al. Experimental food supplementation at African wintering sites allows for earlier and faster fuelling and reveals large flexibility in spring migration departure in pied flycatchers. Ardea 111, 343–370 (2023).
Scott, I., Mitchell, P. I. & Evans, P. R. Seasonal changes in body mass, body composition and food requirements in wild migratory birds. Proc. Nutr. Soc. 53, 521–531 (1994).
Ely, C. R. & Raveling, D. G. Body composition and weight dynamics of wintering greater white-fronted geese. J. Wildl. Manag. 53, 80–87 (1989).
Duijns, S. et al. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B 284, 20171374 (2017).
Ebbinge, B. S. & Spaans, B. The importance of body reserves accumulated in spring staging areas in the temperate zone for breeding in dark-bellied brent geese Branta b. bernicla in the high Arctic. J. Avian Biol. 26, 105–113 (1995).
Muggeo, V. M. R. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).
van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
Alerstam, T. & Högstedt, G. Spring predictability and leap-frog migration. Ornis Scand. 11, 196–200 (1980).
Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).
Si, Y. et al. Do Arctic breeding geese track or overtake a green wave during spring migration? Sci. Rep. 5, 8749 (2015).
Bell, F. et al. Individuals departing non-breeding areas early achieve earlier breeding and higher breeding success. Sci. Rep. 14, 4075 (2024).
Dossman, B. C., Rodewald, A. D., Studds, C. E. & Marra, P. P. Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology 104, e3938 (2023).
English, W. B. et al. The influence of migration timing and local conditions on reproductive timing in Arctic-breeding birds. Ecol. Evol. 15, e70610 (2025).
van Gils, J. A. et al. Longer guts and higher food quality increase energy intake in migratory swans. J. Anim. Ecol. 77, 1234–1241 (2008).
Kvist, A. & Lindström, Å. Maximum daily energy intake: it takes time to lift the metabolic ceiling. Phys. Biochem. Zool. 73, 30–36 (2000).
Dokter, A. M. et al. Agricultural pastures challenge the attractiveness of natural saltmarsh for a migratory goose. J. Appl. Ecol. 55, 2707–2718 (2018).
Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).
Lameris, T. et al. Sufficient food is critical for a long-distant migratory shorebird to advance migration phenology. Authorea https://doi.org/10.22541/au.174343332.23806959/v1 (2025).
Pot, M. T. et al. Wintering geese trade-off energetic gains and costs when switching from agricultural to natural habitats. Ardea 107, 183–196 (2019).
Eichhorn, G., Meijer, Ha. J., Oosterbeek, K. & Klaassen, M. Does agricultural food provide a good alternative to a natural diet for body store deposition in geese? Ecosphere 3, art35 (2012).
Lameris, T. K. et al. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology. Ecol. Evol. 7, 2652–2660 (2017).
Tombre, I. M. et al. The onset of spring and timing of migration in two arctic nesting goose populations: the pink-footed goose Anser bachyrhynchus and the barnacle goose Branta leucopsis. J. Avian Biol. 39, 691–703 (2008).
Van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2011).
Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2014).
Lisovski, S. et al. Predicting resilience of migratory birds to environmental change. Proc. Natl Acad. Sci. USA 121, e2311146121 (2024).
Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
Callaghan, T. V. et al. The changing face of Arctic snow cover: a synthesis of observed and projected changes. AMBIO 40, 17–31 (2011).
Linssen, H., van Loon, E. E., Shamoun-Baranes, J. Z., Nuijten, R. J. M. & Nolet, B. A. Migratory swans individually adjust their autumn migration and winter range to a warming climate. Glob. Change Biol. 29, 6888–6899 (2023).
Lewin, P. J. et al. Climate change drives migratory range shift via individual plasticity in shearwaters. Proc. Natl Acad. Sci. USA 121, e2312438121 (2024).
Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).
Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
McLaren, J. D., Shamoun-Baranes, J. & Bouten, W. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds. J. Theor. Biol. 316, 90–98 (2013).
Schmaljohann, H., Eikenaar, C. & Sapir, N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 97, 1231–1252 (2022).
Madsen, J. Spring migration strategies in pink-footed geese Anser brachyrhynchus and consequences for spring fattening and fecundity. Ardea 89, 43–55 (2001).
Shamoun-Baranes, J. & Camphuysen, K. C. J. An annual cycle perspective on energetics and locomotion of migratory animals. J. Exp. Biol. 228, JEB248053 (2025).
Ebbinge, B. S. et al. The website geese.org, an interactive database to report marked waterfowl. Goose Bull. 25, 11–18 (2020).
Madsen, J., Tjørnløv, R. S., Frederiksen, M., Mitchell, C. & Sigfússon, A. Th. Connectivity between flyway populations of waterbirds: assessment of rates of exchange, their causes and consequences. J. Appl. Ecol. 51, 183–193 (2014).
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
Boom, M. P. et al. Earlier springs increase goose breeding propensity and nesting success at Arctic but not at temperate latitudes. J. Anim. Ecol. 92, 2399–2411 (2023).
Moonen, S. et al. Sharing habitat: effects of migratory barnacle geese density on meadow breeding waders. J. Nat. Conserv. 72, 126355 (2023).
Kölzsch, A. et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507 (2016).
Schreven, K. H. T., Stolz, C., Madsen, J. & Nolet, B. A. Nesting attempts and success of Arctic-breeding geese can be derived with high precision from accelerometry and GPS-tracking. Anim. Biotelem. 9, 25 (2021).
Nuijten, R. J. M. & Nolet, B. Chains as strong as the weakest link: remote assessment of aquatic resource use on spring migration by Bewick’s swans. Avian Conserv. Ecol. 15, 14 (2020).
Linssen, H. et al. Tracking data as an alternative to resighting data for inferring population ranges. J. Biogeogr. 51, 2356–2368 (2024).
Kays, R. et al. The Movebank system for studying global animal movement and demography. Methods Ecol. Evol. 13, 419–431 (2022).
Kranstauber, B., Safi, K. & Scharf, A. K. move2: R package for processing movement data. Methods Ecol. Evol. 15, 1561–1567 (2024).
Spaans, B., Van’t Hoff, K. (C.A), der Veer, W. V. & Ebbinge, B. S. The significance of female body stores for egg laying and incubation in dark-bellied brent geese Branta bernicla bernicla. Ardea 95, 3–15 (2007).
Vermote, E. & Wolfe, R. MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V061 (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 21 January 2025); https://doi.org/10.5067/MODIS/MOD09GA.061
Aybar, C., Wu, Q., Bautista, L., Yali, R. & Barja, A. rgee: an R package for interacting with Google Earth Engine. J. Open Source Softw. 5, 2272 (2020).
Versluijs, T. S. L. RGEE_Snowmelt (v1.3.0). Zenodo https://doi.org/10.5281/zenodo.8229031 (2025).
Ackerman, S. MODIS Atmosphere L2 Cloud Mask Product (NASA MODIS Adaptive Processing System, 2015); https://doi.org/10.5067/MODIS/MOD35_L2.006
Carroll, M. et al. MOD44W MODIS/Terra Land Water Mask Derived From MODIS and SRTM L3 Global 250 m SIN Grid V006 (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 21 January 2025); https://doi.org/10.5067/MODIS/MOD44W.006
Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).
Hall, D. K., Riggs, G. A. & Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 54, 127–140 (1995).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Akaike, H. in Second International Symposium on Information Theory (eds Petrov, B. N. & Csaki, B. F.) 267–281 (Akadémiai Kiadó, 1973).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
Linssen, H. et al. Analysis scripts and snowmelt data for ‘Scope for waterfowl to speed up migration to a warming Arctic’. figshare https://doi.org/10.21942/uva.28597007 (2025).