Hu J, Zhao X, Gu L, Liu P, Zhao B, Zhang J, et al. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agric Water Manage. 2023;289: 108525.
Zhao M, Ren Y, Wei W, Yang J, Zhong Q, Li Z. Metabolite analysis of Jerusalem artichoke (Helianthus tuberosus L.) seedlings in response to polyethylene Glycol-Simulated drought stress. Int J Mol Sci. 2021;22:3294.
He F, Wu Z, Zhao Z, Chen G, Wang X, Cui X, et al. Drought stress drives sex-specific differences in plant resistance against herbivores between male and female poplars through changes in transcriptional and metabolic profiles. Sci Total Environ. 2022;845: 157171.
Hura T, Hura K, Ostrowska A. Drought-Stress induced physiological and molecular changes in plants. Int J Mol Sci. 2022;23:4698.
Li Y, Liu N, Fan H, Su J, Fei C, Wang K, et al. Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet. Agric Water Manage. 2019;223: 105701.
Zheng H, Yang Z, Wang W, Guo S, Li Z, Liu K, et al. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Plant Physiol Biochem. 2020;149:11–26.
Chaves M, Maroco J, Pereira J. Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol. 2003. https://doi.org/10.1071/FP02076.
Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019;8: 94.
Wang X, Wang M, Yan G, Yang H, Wei G, Shen T et al. Comparative analysis of drought stress-induced physiological and transcriptional changes of two black Sesame cultivars during anthesis. Front Plant Sci. 2023;14:1117507.
Kang Z, Babar MA, Khan N, Guo J, Khan J, Islam S, et al. Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS One. 2019;14:e0213502.
Lanzinger A, Frank T, Reichenberger G, Herz M, Engel K-H. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars. J Agric Food Chem. 2015;63:4252–61.
Gundaraniya SA, Ambalam PS, Tomar RS. Metabolomic profiling of drought-tolerant and susceptible peanut (Arachis hypogaea L.) genotypes in response to drought stress. ACS Omega. 2020;5:31209–19.
Zhi X, Bian X, Yu J, Xiao X, Duan B, Huang F, et al. Comparative metabolomics analysis of tolerant and sensitive genotypes of rapeseed (Brassica napus L.) seedlings under drought stress. Agric Water Manage. 2024;296: 108797.
Zhang X, Han C, Wang Y, Liu T, Liang Y, Cao Y. Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L.) under drought stress. BMC Plant Biol. 2024;24:563.
Zhou Z, Li J, Gao Y, Wang X, Wang R, Huang H et al. Research on drought stress in medicago sativa L. from 1998 to 2023: a bibliometric analysis. Front Plant Sci. 2024;15:1406256.
Wang K, Nan L, Xia J, Wu S, Yang L. Metabolomics reveal root differential metabolites of different root-type alfalfa under drought stress. Front Plant Sci. 2024;15:1341826.
Kefale H, Segla Koffi Dossou S, Li F, Jiang N, Zhou R, Wang L, et al. Widely targeted metabolic profiling provides insights into variations in bioactive compounds and antioxidant activity of sesame, soybean, peanut, and Perilla. Food Res Int. 2023;174: 113586.
Wang W, Shi S, Kang W, He L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H2O2 production to increase antioxidant enzyme activity. J Plant Physiol. 2023;291: 154139.
Wang W, Kang W, Shi S, Liu L. Physiological and metabolomic analyses reveal the mechanism by which exogenous spermine improves drought resistance in alfalfa leaves (Medicago sativa L). Front Plant Sci. 2024;15:1466493.
Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res Int. 2022;153: 110948.
Meher null, Shivakrishna P, Ashok Reddy K, Manohar Rao D. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci. 2018;25:285–9.
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. Chemosphere. 2024;362: 142671.
Takatsuka H, Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot. 2014;65:2633–43.
Madouh TA, Quoreshi AM. The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: a review. Diversity. 2023;15:391.
Hannachi S, Signore A, Adnan M, Mechi L. Single and associated effects of drought and heat stresses on physiological, biochemical and antioxidant machinery of four eggplant cultivars. Plants. 2022;11:2404.
Li Y, Tan B, Wang D, Mu Y, Li G, Zhang Z, et al. Proteomic analysis revealed different molecular mechanisms of response to PEG stress in Drought-Sensitive and Drought-Resistant sorghums. Int J Mol Sci. 2022;23:13297.
Li X, Liu Y, Hu W, Yin B, Liang B, Li Z, et al. Integrative physiological, metabolomic, and transcriptomic analysis reveals the drought responses of two Apple rootstock cultivars. BMC Plant Biol. 2024;24:219.
Walker RP, Chen Z-H, Famiani F. Gluconeogenesis in plants: a key interface between organic acid/amino acid/lipid and sugar metabolism. Molecules. 2021;26:5129.
Zeng W, Peng Y, Zhao X, Wu B, Chen F, Ren B, et al. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int J Mol Sci. 2019;20:2793.
Xiao J, Zhou Y, Xie Y, Li T, Su X, He J, et al. ATP homeostasis and signaling in plants. Plant Commun. 2024;5: 100834.
Wang X, Li Y, Wang X, Li X, Dong S. Physiology and metabonomics reveal differences in drought resistance among soybean varieties. Bot Stud. 2022;63:1–15.
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics. 2024;25:806.
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90:927–63.
Dwivedi AK, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. Plant Physiol Biochem. 2023;201: 107849.
Yadav R, Saini R, Adhikary A, Kumar S. Unravelling cross priming induced heat stress, combinatorial heat and drought stress response in contrasting chickpea varieties. Plant Physiol Biochem. 2022;180:91–105.
Batista-Silva W, Heinemann B, Rugen N, Nunes-Nesi A, Araújo WL, Braun H-P, et al. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019;42:1630–44.
Li Y, Su Z, Lin Y, Xu Z, Bao H, Wang F, et al. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biol. 2024;24:34.
Wang Y, Zhao Y, Wang B, Han Y, Li Y, Prusky D, et al. Soluble sugars, organic acids and energy metabolism involved in the wound healing of muskmelons elicited by benzothiadiazole. Postharvest Biol Technol. 2023;199: 112277.
Zhang Y, Fernie AR. The role of TCA cycle enzymes in plants. Adv Biol (Weinh). 2023;7: e2200238.
Chevilly S, Dolz-Edo L, López-Nicolás JM, Morcillo L, Vilagrosa A, Yenush L, et al. Physiological and molecular characterization of the differential response of broccoli (Brassica oleracea var. italica) cultivars reveals limiting factors for broccoli tolerance to drought stress. J Agric Food Chem. 2021;69:10394–404.
Jurado-Mañogil C, Barba-Espín G, Hernández JA, Diaz-Vivancos P. Comparative metabolomic analysis between tomato and halophyte plants under intercropping conditions. Physiol Plant. 2023;175: e13971.
Yan S, Zhan M, Liu Z, Zhang X. Insight into the transcriptional regulation of key genes involved in proline metabolism in plants under osmotic stress. Biochimie. 2025;228:8–14.
Montilla-Bascón G, Rubiales D, Hebelstrup KH, Mandon J, Harren F, Cristescu SM, et al. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-13458-1.
Montesinos‐Pereira D, Barrameda‐Medina Y, Romero L, Ruiz J, Sánchez‐Rodríguez E. Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. Plant Biol. 2014. https://doi.org/10.1111/plb.12178.
Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot. 2012;63:5003–15.
Ashraf U, Anjum SA, Naseer S, Abbas A, Abrar M, Nawaz M, et al. Gamma amino butyric acid (GABA) application modulated the morpho-physiological and yield traits of fragrant rice under well-watered and drought conditions. BMC Plant Biol. 2024;24:569.
Palabıyık Ş, Çetinkaya İ, Öztürk TA, Bor M. Flagellin induced GABA-shunt improves drought stress tolerance in brassica napus L. BMC Plant Biol. 2024;24:864.
Ezraty B, Aussel L, Barras F. Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta. 2005;1703:221–9.
Zhao X, Han X, Lu X, Yang H, Wang Z-Y, Chai M. Genome-Wide identification and characterization of the Msr gene family in alfalfa under abiotic stress. Int J Mol Sci. 2023;24:9638.
He M-W, Wang Y, Wu J-Q, Shu S, Sun J, Guo S-R. Isolation and characterization of S-adenosylmethionine synthase gene from cucumber and responsive to abiotic stress. Plant Physiol Biochem. 2019;141:431–45.
Guo C-J, Zhang T, Leng Q, Zhou X, Zhong J, Liu J-L. Dynamic Arabidopsis P5CS filament facilitates substrate channelling. Nat Plants. 2024;10:880–9.
Zhou T, Wang P, Yang R, Gu Z. Polyamines regulating phytic acid degradation in mung bean sprouts. J Sci Food Agric. 2018;98:3299–308.
Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book. 2011;9: e0152.
Deng Y, Lu S. Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci. 2017;36:257–90.
Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA, et al. Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF, editors. Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. Cham: Springer International Publishing; 2019. pp. 207–19.
Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B. The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants. 2021;10: 118.
Du W, Yang J, Li Q, Jiang W, Pang Y. Medicago truncatula β-glucosidase 17 contributes to drought and salt tolerance through antioxidant flavonoid accumulation. Plant Cell Environ. 2024;47:3076–89.
Dong X, Han B, Chen J, Luo D, Zhou Q, Liu Z. Multiomics analyses reveal MsC3H29 positively regulates flavonoid biosynthesis to improve drought resistance of autotetraploid cultivated alfalfa (Medicago sativa L). J Agric Food Chem. 2024;72:14448–65.
Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wedzony M. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot. 2007;100:767–75.
Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell. 2002;14:1093–107.
Wang Z, Xiao Y, Chang H, Sun S, Wang J, Liang Q, et al. The regulatory network of sweet corn (Zea Mays L.) seedlings under heat stress revealed by transcriptome and metabolome analysis. Int J Mol Sci. 2023;24:10845.
Wen W, Wang R, Su L, Lv A, Zhou P, An Y. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L). Environ Exp Bot. 2021;184: 104373.
Yu Q, Xiong Y, Su X, Xiong Y, Dong Z, Zhao J, et al. Comparative metabolomic studies of Siberian Wildrye (Elymus sibiricus L.): a new look at the mechanism of plant drought resistance. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms24010452.
Owusu AG, Lv Y-P, Liu M, Wu Y, Li C-L, Guo N, et al. Transcriptomic and metabolomic analyses reveal the potential mechanism of waterlogging resistance in cotton (Gossypium hirsutum L). Front Plant Sci. 2023;14:1088537.
Jacobo-Velázquez DA, Martínez-Hernández GB, Del C, Rodríguez S, Cao C-M, Cisneros-Zevallos L. Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in Carrot tissue under wounding and hyperoxia stress. J Agric Food Chem. 2011;59:6583–93.
Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. Plant J. 2021;105:446–58.
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, et al. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. Stress Biol. 2024;4: 31.
Gao L, Lv Q, Wang L, Han S, Wang J, Chen Y, et al. Abscisic acid-mediated autoregulation of the MYB41-BRAHMA module enhances drought tolerance in Arabidopsis. Plant Physiol. 2024;196:1608–26.
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and metabolomic profiling of root tissue in drought-tolerant and drought-susceptible wheat genotypes in response to water stress. Int J Mol Sci. 2024;25: 10430.
Zhang J, Yang D, Li M, Shi L. Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress. PLoS One. 2016;11:e0159622.
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32:40–52.
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, et al. Overexpression of auxin/indole-3-acetic acid gene TrIAA27 enhances biomass, drought, and salt tolerance in Arabidopsis thaliana. Plants. 2024;13: 2684.
Demirkol G. PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes. Plant Physiol Biochem. 2021;166:540–8.
Yu W, Luo L, Qi X, Cao Y, An J, Xie Z, et al. Insights into the impact of Trans-Zeatin overproduction-engineered Sinorhizobium meliloti on alfalfa (Medicago sativa L.) tolerance to drought stress. J Agric Food Chem. 2024;72:8650–63.