Wilson DS, Keefe AD. Random mutagenesis by PCR. Curr Protoc Mol Biol. 2001;51:8–3.


Google Scholar
 

Reetz MT, Wu S. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem Commun (Camb). 2008;43:5499–501.

Article 

Google Scholar
 

Yu H, Ye C, Wang Y, Wang Z, Fang S, Jin H, et al. Enhancing substrate preference of iridoid synthase via focused polarity-steric mutagenesis scanning. Chem Bio Eng. 2024;1:826–35.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994;91:10747–51.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 1995;164:49–53.

Article 
PubMed 

Google Scholar
 

Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet. 2015;16:379–94.

Article 
PubMed 

Google Scholar
 

Fryer T, Wolff DS, Overath MD, Schäfer E, Laustsen AH, Jenkins TP, et al. Post-assembly plasmid amplification for increased transformation yields in E. coli and S. cerevisiae. Chem Bio Eng. 2025;2:87–96.

Article 
PubMed 

Google Scholar
 

Molina RS, Rix G, Mengiste AA, Alvarez B, Seo D, Chen H, et al. In vivo hypermutation and continuous evolution. Nat Rev Methods Primers. 2022;2:36.

Article 

Google Scholar
 

Chen X, Zhang J. The genomic landscape of position effects on protein expression level and noise in yeast. Cell Syst. 2016;2:347–54.

Article 
PubMed 
PubMed Central 

Google Scholar
 

James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet. 2025;26:298–319.

Article 
PubMed 

Google Scholar
 

Erdogan M, Fabritius A, Basquin J, Griesbeck O. Targeted In Situ Protein Diversification and Intra-organelle Validation in Mammalian Cells. Cell Chem Biol. 2020;27:610-621.e615.

Article 
PubMed 

Google Scholar
 

Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17:704–14.

Article 
PubMed 

Google Scholar
 

Lewis JA, Morran LT. Advantages of laboratory natural selection in the applied sciences. J Evol Biol. 2022;35:5–22.

Article 
PubMed 

Google Scholar
 

Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, et al. Recombineering and MAGE. Nat Rev Methods Primers. 2021;1:7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460:894–8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM. Genome-scale promoter engineering by coselection MAGE. Nat Methods. 2012;9:591–3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Carr PA, Wang HH, Sterling B, Isaacs FJ, Lajoie MJ, Xu G, et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 2012;40:e132.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nyerges Á, Csörgő B, Nagy I, Bálint B, Bihari P, Lázár V, et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. 2016;113:2502–7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Barbieri EM, Muir P, Akhuetie-Oni BO, Yellman CM, Isaacs FJ. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes. Cell. 2017;171:1453-1467.e1413.

Article 
PubMed 
PubMed Central 

Google Scholar
 

DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM. Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol. 2013;2:741–9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ciaccia PN, Liang Z, Schweitzer AY, Metzner E, Isaacs FJ. Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing. Nat Commun. 2024;15:5218.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.

Article 
PubMed 

Google Scholar
 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu X, Qi LS. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2019;431:34–47.

Article 
PubMed 

Google Scholar
 

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39:359–72.

Article 
PubMed 

Google Scholar
 

Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. 2013;31:251–8.

Article 
PubMed 

Google Scholar
 

Kim YK, Wee G, Park J, Kim J, Baek D, Kim JS, et al. TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol. 2013;20:1458–64.

Article 
PubMed 

Google Scholar
 

Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol. 2023;41:1117–29.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979;76:4951–5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brown AD, Claybon AB, Bishop AJ. A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes. Mol Cell Biol. 2011;31:3593–602.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.

PubMed 
PubMed Central 

Google Scholar
 

Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 2014;513:120–3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217–22.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat Commun. 2023;14:7702.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sahu S, Sullivan TL, Mitrophanov AY, Galloux M, Nousome D, Southon E, et al. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet. 2023;19:e1010940.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Waters AJ, Brendler-Spaeth T, Smith D, Offord V, Tan HK, Zhao Y, et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat Genet. 2024;56:1434–45.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell. 2024;187:5719-5734.e5719.

Article 
PubMed 

Google Scholar
 

Buckley M, Terwagne C, Ganner A, Cubitt L, Brewer R, Kim DK, et al. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat Genet. 2024;56:1446–55.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, et al. Functional evaluation and clinical classification of BRCA2 variants. Nature. 2025;638:528–37.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng. 2018;48:288–96.

Article 
PubMed 

Google Scholar
 

Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol. 2017;35:48–55.

Article 
PubMed 

Google Scholar
 

Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4:585–94.

Article 
PubMed 

Google Scholar
 

Bao Z, HamediRad M, Xue P, Xiao H, Tasan I, Chao R, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol. 2018;36:505–8.

Article 
PubMed 

Google Scholar
 

Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, et al. Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol. 2018;36:512–20.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guo X, Chavez A, Tung A, Chan Y, Kaas C, Yin Y, et al. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol. 2018;36:540–6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. 2018;175:544-557.e516.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Deng L, Zhou YL, Cai Z, Zhu J, Li Z, Bao Z. Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast. Sci Adv. 2024;10:eadj9382.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv. 2022;54:107795.

Article 
PubMed 

Google Scholar
 

Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. RNA-templated DNA repair. Nature. 2007;447:338–41.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jensen ED, Laloux M, Lehka BJ, Pedersen LE, Jakočiūnas T, Jensen MK, et al. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res. 2021;49:e88.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Crook N, Abatemarco J, Sun J, Wagner JM, Schmitz A, Alper HS. In vivo continuous evolution of genes and pathways in yeast. Nat Commun. 2016;7:13051.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds. Cell. 2018;175:1946-1957.e1913.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36:765–71.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun. 2019;10:1136.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cullot G, Aird EJ, Schlapansky MF, Yeh CD, van de Venn L, Vykhlyantseva I, Kreutzer S, Mailänder D, Lewków B, Klermund J, et al. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02488-6.

Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ploessl D, Zhao Y, Cao M, Ghosh S, Lopez C, Sayadi M, et al. A repackaged CRISPR platform increases homology-directed repair for yeast engineering. Nat Chem Biol. 2022;18:38–46.

Article 
PubMed 

Google Scholar
 

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.

Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. 2004;101:16745–9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016;13:1029–35.

Article 
PubMed 

Google Scholar
 

Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13:1036–42.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol. 2020;38:875–82.

Article 
PubMed 

Google Scholar
 

Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol. 2020;38:856–60.

Article 
PubMed 

Google Scholar
 

Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 2020;38:861–4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol. 2020;38:865–9.

Article 
PubMed 

Google Scholar
 

Tao W, Liu Q, Huang S, Wang X, Qu S, Guo J, et al. CABE-RY: a PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther. 2021;26:114–21.


Google Scholar
 

Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol. 2023;41:673–85.

Article 
PubMed 

Google Scholar
 

Lam DK, Feliciano PR, Arif A, Bohnuud T, Fernandez TP, Gehrke JM, et al. Improved cytosine base editors generated from TadA variants. Nat Biotechnol. 2023;41:686–97.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res. 2022;50:5384–99.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang A, Shan T, Sun Y, Chen Z, Hu J, Hu Z, et al. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. Plant Biotechnol J. 2023;21:2597–610.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR c-to-g base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021;39:41–6.

Article 
PubMed 

Google Scholar
 

Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.

Article 
PubMed 

Google Scholar
 

Kweon J, Jang A-H, Shin HR, See J-E, Lee W, Lee JW, et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene. 2020;39:30–5.

Article 
PubMed 

Google Scholar
 

Huang C, Li G, Wu J, Liang J, Wang X. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol. 2021;22:80.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hanna RE, Hegde M, Fagre CR, DeWeirdt PC, Sangree AK, Szegletes Z, et al. Massively parallel assessment of human variants with base editor screens. Cell. 2021;184:1064-1080.e1020.

Article 
PubMed 

Google Scholar
 

Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, Kennedy M, et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol. 2022;40:862–73.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sangree AK, Griffith AL, Szegletes ZM, Roy P, DeWeirdt PC, Hegde M, et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat Commun. 2022;13:1318.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim Y, Lee S, Cho S, Park J, Chae D, Park T, et al. High-throughput functional evaluation of human cancer-associated mutations using base editors. Nat Biotechnol. 2022;40:874–84.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lue NZ, Garcia EM, Ngan KC, Lee C, Doench JG, Liau BB. Base editor scanning charts the DNMT3A activity landscape. Nat Chem Biol. 2023;19:176–86.

Article 
PubMed 

Google Scholar
 

Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, et al. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. Cell Genom. 2024;4:100583.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tong H, Wang X, Liu Y, Liu N, Li Y, Luo J, et al. Programmable a-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol. 2023;41:1080–4.

Article 
PubMed 

Google Scholar
 

Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02439-1.

Hao W, Cui W, Cheng Z, Han L, Suo F, Liu Z, et al. Development of a base editor for protein evolution via in situ mutation in vivo. Nucleic Acids Res. 2021;49:9594–605.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Cheng H, Liu Y, Liu Y, Wen X, Zhang K, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun. 2021;12:678.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hao W, Cui W, Liu Z, Suo F, Wu Y, Han L, et al. A new-generation base editor with an expanded editing window for microbial cell evolution in vivo based on CRISPR-Cas12b engineering. Adv Sci. 2024;11:2309767.

Article 

Google Scholar
 

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169:931–45.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60:490–505.

Article 
PubMed 

Google Scholar
 

Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant. 2020;13:565–72.

Article 
PubMed 

Google Scholar
 

Wang X, Pan W, Sun C, Yang H, Cheng Z, Yan F, et al. Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution. Genome Biol. 2024;25:215.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722–36.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun. 2019;10:5302.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zimmermann A, Prieto-Vivas JE, Cautereels C, Gorkovskiy A, Steensels J, Van de Peer Y, et al. A Cas3-base editing tool for targetable in vivo mutagenesis. Nat Commun. 2023;14:3389.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, et al. Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science. 2024;386:eadn5876.

Article 
PubMed 

Google Scholar
 

Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, et al. A compact cascade-Cas3 system for targeted genome engineering. Nat Methods. 2020;17:1183–90.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Whitford CM, Gockel P, Faurdal D, Gren T, Sigrist R, Weber T. Cascade-Cas3 enables highly efficient genome engineering in Streptomyces species. Nucleic Acids Res. 2025. https://doi.org/10.1093/nar/gkaf214.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou Q, Zhao Y, Ke C, Wang H, Gao S, Li H, et al. Repurposing endogenous type I-E CRISPR-Cas systems for natural product discovery in Streptomyces. Nat Commun. 2024;15:9833.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, et al. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. Mol Cell. 2019;74:936-950.e935.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tan R, Krueger RK, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, et al. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Mol Cell. 2022;82:852-867.e855.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guo J, Gong L, Yu H, Li M, An Q, Liu Z, et al. Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells. Nat Commun. 2024;15:7277.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, et al. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnol J. 2023;21:2196–208.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang J, Zhao D, Li J, Hu M, Xin X, Price MA, et al. Helicase-AID: a novel molecular device for base editing at random genomic loci. Metab Eng. 2021;67:396–402.

Article 
PubMed 

Google Scholar
 

Xu R, Liu X, Li J, Qin R, Wei P. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat Plants. 2021;7:888–92.

Article 
PubMed 

Google Scholar
 

Erwood S, Bily TMI, Lequyer J, Yan J, Gulati N, Brewer RA, et al. Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol. 2022;40:885–95.

Article 
PubMed 

Google Scholar
 

Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol Cell. 2023;83:4633-4645.e4639.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim Y, Oh HC, Lee S, Kim HH. Saturation profiling of drug-resistant genetic variants using prime editing. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02465-z

Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02172-9

Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, et al. Rewriting regulatory DNA to dissect and reprogram gene expression. Cell. 2025. https://doi.org/10.1016/j.cell.2025.03.034.

Article 
PubMed 

Google Scholar
 

Xie J, Xiang J, Shen Y, Shao S. Mechanistic insights into the tools for intracellular protein delivery. Chem Bio Eng. 2025;2:132–55.

Article 
PubMed 

Google Scholar
 

Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. 2018;560:248–52.

Article 
PubMed 

Google Scholar
 

Tou CJ, Schaffer DV, Dueber JE. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth Biol. 2020;9:1911–6.

Article 
PubMed 

Google Scholar
 

Qi L, Sui Y, Tang XX, McGinty RJ, Liang XZ, Dominska M, et al. Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements. PLoS Genet. 2023;19:e1010590.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koeppel J, Ferreira R, Vanderstichele T, Riedmayr LM, Peets EM, Girling G, et al. Randomizing the human genome by engineering recombination between repeat elements. Science. 2025;387:eado3979.

Article 
PubMed 

Google Scholar
 

Koeppel J, Murat P, Girling G, Peets EM, Gouley M, Rebernig V, Maheshwari A, Hepkema J, Weller J, Johnkingsly Jebaraj JH, et al. Resolution of a human super-enhancer by targeted genome randomisation. bioRxiv 2025:2025.2001.2014.632548.

Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: recent advances and applications. Biotechnol Adv. 2024;72:108343.

Article 
PubMed 

Google Scholar
 

Xu J, Sun Y, Wu J, Yang S, Yang L. Chromosome recombination and modification by LoxP-mediated evolution in Vibrio natriegens using CRISPR-associated transposases. Biotechnol Bioeng. 2024;121(3):1163–72.

Article 
PubMed 

Google Scholar
 

Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40:218–26.

Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nat Rev Methods Primers. 2022;2:9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pinglay S, Lalanne J-B, Daza RM, Kottapalli S, Quaisar F, Koeppel J, et al. Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science. 2025;387:eado5978.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cai Z, Xie W, Bao Z. Broadening the targetable space: engineering and discovery of PAM-flexible Cas proteins. Trends Microbiol. 2024;32:728–31.

Article 
PubMed 

Google Scholar
 

Kim HK, Lee S, Kim Y, Park J, Min S, Choi JW, et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng. 2020;4:111–24.

Article 
PubMed 

Google Scholar
 

Yang C, Zhou Z, Sun X, Ju H, Yue X, Rao S, et al. PAMless spRY exhibits a preference for the seed region for efficient targeting. Cell Rep. 2024;43:114225.

Article 
PubMed 

Google Scholar
 

Jiang W, Feng S, Huang S, Yu W, Li G, Yang G, et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res. 2018;28:855–61.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Zhou L, Liu N, Yao S. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduct Target Ther. 2019;4:36.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Villiger L, Schmidheini L, Mathis N, Rothgangl T, Marquart K, Schwank G. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Mol Ther Nucleic Acids. 2021;26:502–10.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-cas systems direct RNA-guided DNA integration. Nature. 2019;571:219–25.

Article 
PubMed 

Google Scholar
 

Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, Villiger L, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol. 2023;41:500–12.

Article 
PubMed 

Google Scholar
 

Chen F, Lian M, Ma B, Gou S, Luo X, Yang K, et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol. 2022;5:1163.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Geurts MH, Gandhi S, Boretto MG, Akkerman N, Derks LLM, van Son G, et al. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat Commun. 2023;14:4998.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu Y, Li Y, Liu Y, Xiu X, Liu J, Zhang L, et al. Multiplexed in-situ mutagenesis driven by a dCas12a-based dual-function base editor. Nucleic Acids Res. 2024;52:4739–55.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gupta A, Liu B, Raza S, Chen QJ, Yang B. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. Plant Commun. 2024;5:100741.

Article 
PubMed 

Google Scholar
 

Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. Automated multiplex genome-scale engineering in yeast. Nat Commun. 2017;8:15187.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li S, An J, Li Y, Zhu X, Zhao D, Wang L, et al. Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nat Commun. 2022;13:7386.

Article 
PubMed 
PubMed Central 

Google Scholar