Wilson DS, Keefe AD. Random mutagenesis by PCR. Curr Protoc Mol Biol. 2001;51:8–3.
Reetz MT, Wu S. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem Commun (Camb). 2008;43:5499–501.
Yu H, Ye C, Wang Y, Wang Z, Fang S, Jin H, et al. Enhancing substrate preference of iridoid synthase via focused polarity-steric mutagenesis scanning. Chem Bio Eng. 2024;1:826–35.
Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994;91:10747–51.
Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 1995;164:49–53.
Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet. 2015;16:379–94.
Fryer T, Wolff DS, Overath MD, Schäfer E, Laustsen AH, Jenkins TP, et al. Post-assembly plasmid amplification for increased transformation yields in E. coli and S. cerevisiae. Chem Bio Eng. 2025;2:87–96.
Molina RS, Rix G, Mengiste AA, Alvarez B, Seo D, Chen H, et al. In vivo hypermutation and continuous evolution. Nat Rev Methods Primers. 2022;2:36.
Chen X, Zhang J. The genomic landscape of position effects on protein expression level and noise in yeast. Cell Syst. 2016;2:347–54.
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet. 2025;26:298–319.
Erdogan M, Fabritius A, Basquin J, Griesbeck O. Targeted In Situ Protein Diversification and Intra-organelle Validation in Mammalian Cells. Cell Chem Biol. 2020;27:610-621.e615.
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17:704–14.
Lewis JA, Morran LT. Advantages of laboratory natural selection in the applied sciences. J Evol Biol. 2022;35:5–22.
Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, et al. Recombineering and MAGE. Nat Rev Methods Primers. 2021;1:7.
Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460:894–8.
Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM. Genome-scale promoter engineering by coselection MAGE. Nat Methods. 2012;9:591–3.
Carr PA, Wang HH, Sterling B, Isaacs FJ, Lajoie MJ, Xu G, et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 2012;40:e132.
Nyerges Á, Csörgő B, Nagy I, Bálint B, Bihari P, Lázár V, et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. 2016;113:2502–7.
Barbieri EM, Muir P, Akhuetie-Oni BO, Yellman CM, Isaacs FJ. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes. Cell. 2017;171:1453-1467.e1413.
DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM. Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol. 2013;2:741–9.
Ciaccia PN, Liang Z, Schweitzer AY, Metzner E, Isaacs FJ. Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing. Nat Commun. 2024;15:5218.
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8.
Xu X, Qi LS. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2019;431:34–47.
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60.
Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39:359–72.
Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. 2013;31:251–8.
Kim YK, Wee G, Park J, Kim J, Baek D, Kim JS, et al. TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol. 2013;20:1458–64.
Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol. 2023;41:1117–29.
Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979;76:4951–5.
Brown AD, Claybon AB, Bishop AJ. A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes. Mol Cell Biol. 2011;31:3593–602.
Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.
Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 2014;513:120–3.
Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217–22.
Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat Commun. 2023;14:7702.
Sahu S, Sullivan TL, Mitrophanov AY, Galloux M, Nousome D, Southon E, et al. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet. 2023;19:e1010940.
Waters AJ, Brendler-Spaeth T, Smith D, Offord V, Tan HK, Zhao Y, et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat Genet. 2024;56:1434–45.
Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell. 2024;187:5719-5734.e5719.
Buckley M, Terwagne C, Ganner A, Cubitt L, Brewer R, Kim DK, et al. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat Genet. 2024;56:1446–55.
Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, et al. Functional evaluation and clinical classification of BRCA2 variants. Nature. 2025;638:528–37.
Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng. 2018;48:288–96.
Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol. 2017;35:48–55.
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4:585–94.
Bao Z, HamediRad M, Xue P, Xiao H, Tasan I, Chao R, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol. 2018;36:505–8.
Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, et al. Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol. 2018;36:512–20.
Guo X, Chavez A, Tung A, Chan Y, Kaas C, Yin Y, et al. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol. 2018;36:540–6.
Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. 2018;175:544-557.e516.
Deng L, Zhou YL, Cai Z, Zhu J, Li Z, Bao Z. Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast. Sci Adv. 2024;10:eadj9382.
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv. 2022;54:107795.
Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. RNA-templated DNA repair. Nature. 2007;447:338–41.
Jensen ED, Laloux M, Lehka BJ, Pedersen LE, Jakočiūnas T, Jensen MK, et al. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res. 2021;49:e88.
Crook N, Abatemarco J, Sun J, Wagner JM, Schmitz A, Alper HS. In vivo continuous evolution of genes and pathways in yeast. Nat Commun. 2016;7:13051.
Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds. Cell. 2018;175:1946-1957.e1913.
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36:765–71.
Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun. 2019;10:1136.
Cullot G, Aird EJ, Schlapansky MF, Yeh CD, van de Venn L, Vykhlyantseva I, Kreutzer S, Mailänder D, Lewków B, Klermund J, et al. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02488-6.
Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–9.
Ploessl D, Zhao Y, Cao M, Ghosh S, Lopez C, Sayadi M, et al. A repackaged CRISPR platform increases homology-directed repair for yeast engineering. Nat Chem Biol. 2022;18:38–46.
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.
Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. 2004;101:16745–9.
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016;13:1029–35.
Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13:1036–42.
Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol. 2020;38:875–82.
Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol. 2020;38:856–60.
Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 2020;38:861–4.
Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol. 2020;38:865–9.
Tao W, Liu Q, Huang S, Wang X, Qu S, Guo J, et al. CABE-RY: a PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther. 2021;26:114–21.
Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol. 2023;41:673–85.
Lam DK, Feliciano PR, Arif A, Bohnuud T, Fernandez TP, Gehrke JM, et al. Improved cytosine base editors generated from TadA variants. Nat Biotechnol. 2023;41:686–97.
Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res. 2022;50:5384–99.
Zhang A, Shan T, Sun Y, Chen Z, Hu J, Hu Z, et al. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. Plant Biotechnol J. 2023;21:2597–610.
Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR c-to-g base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021;39:41–6.
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.
Kweon J, Jang A-H, Shin HR, See J-E, Lee W, Lee JW, et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene. 2020;39:30–5.
Huang C, Li G, Wu J, Liang J, Wang X. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol. 2021;22:80.
Hanna RE, Hegde M, Fagre CR, DeWeirdt PC, Sangree AK, Szegletes Z, et al. Massively parallel assessment of human variants with base editor screens. Cell. 2021;184:1064-1080.e1020.
Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, Kennedy M, et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol. 2022;40:862–73.
Sangree AK, Griffith AL, Szegletes ZM, Roy P, DeWeirdt PC, Hegde M, et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat Commun. 2022;13:1318.
Kim Y, Lee S, Cho S, Park J, Chae D, Park T, et al. High-throughput functional evaluation of human cancer-associated mutations using base editors. Nat Biotechnol. 2022;40:874–84.
Lue NZ, Garcia EM, Ngan KC, Lee C, Doench JG, Liau BB. Base editor scanning charts the DNMT3A activity landscape. Nat Chem Biol. 2023;19:176–86.
Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, et al. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. Cell Genom. 2024;4:100583.
Tong H, Wang X, Liu Y, Liu N, Li Y, Luo J, et al. Programmable a-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol. 2023;41:1080–4.
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02439-1.
Hao W, Cui W, Cheng Z, Han L, Suo F, Liu Z, et al. Development of a base editor for protein evolution via in situ mutation in vivo. Nucleic Acids Res. 2021;49:9594–605.
Wang Y, Cheng H, Liu Y, Liu Y, Wen X, Zhang K, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun. 2021;12:678.
Hao W, Cui W, Liu Z, Suo F, Wu Y, Han L, et al. A new-generation base editor with an expanded editing window for microbial cell evolution in vivo based on CRISPR-Cas12b engineering. Adv Sci. 2024;11:2309767.
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169:931–45.
Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60:490–505.
Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant. 2020;13:565–72.
Wang X, Pan W, Sun C, Yang H, Cheng Z, Yan F, et al. Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution. Genome Biol. 2024;25:215.
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722–36.
Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun. 2019;10:5302.
Zimmermann A, Prieto-Vivas JE, Cautereels C, Gorkovskiy A, Steensels J, Van de Peer Y, et al. A Cas3-base editing tool for targetable in vivo mutagenesis. Nat Commun. 2023;14:3389.
Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, et al. Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science. 2024;386:eadn5876.
Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, et al. A compact cascade-Cas3 system for targeted genome engineering. Nat Methods. 2020;17:1183–90.
Whitford CM, Gockel P, Faurdal D, Gren T, Sigrist R, Weber T. Cascade-Cas3 enables highly efficient genome engineering in Streptomyces species. Nucleic Acids Res. 2025. https://doi.org/10.1093/nar/gkaf214.
Zhou Q, Zhao Y, Ke C, Wang H, Gao S, Li H, et al. Repurposing endogenous type I-E CRISPR-Cas systems for natural product discovery in Streptomyces. Nat Commun. 2024;15:9833.
Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, et al. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. Mol Cell. 2019;74:936-950.e935.
Tan R, Krueger RK, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, et al. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Mol Cell. 2022;82:852-867.e855.
Guo J, Gong L, Yu H, Li M, An Q, Liu Z, et al. Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells. Nat Commun. 2024;15:7277.
Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, et al. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnol J. 2023;21:2196–208.
Wang J, Zhao D, Li J, Hu M, Xin X, Price MA, et al. Helicase-AID: a novel molecular device for base editing at random genomic loci. Metab Eng. 2021;67:396–402.
Xu R, Liu X, Li J, Qin R, Wei P. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat Plants. 2021;7:888–92.
Erwood S, Bily TMI, Lequyer J, Yan J, Gulati N, Brewer RA, et al. Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol. 2022;40:885–95.
Ren X, Yang H, Nierenberg JL, Sun Y, Chen J, Beaman C, et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol Cell. 2023;83:4633-4645.e4639.
Kim Y, Oh HC, Lee S, Kim HH. Saturation profiling of drug-resistant genetic variants using prime editing. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02465-z
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02172-9
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, et al. Rewriting regulatory DNA to dissect and reprogram gene expression. Cell. 2025. https://doi.org/10.1016/j.cell.2025.03.034.
Xie J, Xiang J, Shen Y, Shao S. Mechanistic insights into the tools for intracellular protein delivery. Chem Bio Eng. 2025;2:132–55.
Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. 2018;560:248–52.
Tou CJ, Schaffer DV, Dueber JE. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth Biol. 2020;9:1911–6.
Qi L, Sui Y, Tang XX, McGinty RJ, Liang XZ, Dominska M, et al. Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements. PLoS Genet. 2023;19:e1010590.
Koeppel J, Ferreira R, Vanderstichele T, Riedmayr LM, Peets EM, Girling G, et al. Randomizing the human genome by engineering recombination between repeat elements. Science. 2025;387:eado3979.
Koeppel J, Murat P, Girling G, Peets EM, Gouley M, Rebernig V, Maheshwari A, Hepkema J, Weller J, Johnkingsly Jebaraj JH, et al. Resolution of a human super-enhancer by targeted genome randomisation. bioRxiv 2025:2025.2001.2014.632548.
Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: recent advances and applications. Biotechnol Adv. 2024;72:108343.
Xu J, Sun Y, Wu J, Yang S, Yang L. Chromosome recombination and modification by LoxP-mediated evolution in Vibrio natriegens using CRISPR-associated transposases. Biotechnol Bioeng. 2024;121(3):1163–72.
Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40:218–26.
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nat Rev Methods Primers. 2022;2:9.
Pinglay S, Lalanne J-B, Daza RM, Kottapalli S, Quaisar F, Koeppel J, et al. Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science. 2025;387:eado5978.
Cai Z, Xie W, Bao Z. Broadening the targetable space: engineering and discovery of PAM-flexible Cas proteins. Trends Microbiol. 2024;32:728–31.
Kim HK, Lee S, Kim Y, Park J, Min S, Choi JW, et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng. 2020;4:111–24.
Yang C, Zhou Z, Sun X, Ju H, Yue X, Rao S, et al. PAMless spRY exhibits a preference for the seed region for efficient targeting. Cell Rep. 2024;43:114225.
Jiang W, Feng S, Huang S, Yu W, Li G, Yang G, et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res. 2018;28:855–61.
Wang Y, Zhou L, Liu N, Yao S. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduct Target Ther. 2019;4:36.
Villiger L, Schmidheini L, Mathis N, Rothgangl T, Marquart K, Schwank G. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Mol Ther Nucleic Acids. 2021;26:502–10.
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53.
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-cas systems direct RNA-guided DNA integration. Nature. 2019;571:219–25.
Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, Villiger L, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol. 2023;41:500–12.
Chen F, Lian M, Ma B, Gou S, Luo X, Yang K, et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol. 2022;5:1163.
Geurts MH, Gandhi S, Boretto MG, Akkerman N, Derks LLM, van Son G, et al. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat Commun. 2023;14:4998.
Wu Y, Li Y, Liu Y, Xiu X, Liu J, Zhang L, et al. Multiplexed in-situ mutagenesis driven by a dCas12a-based dual-function base editor. Nucleic Acids Res. 2024;52:4739–55.
Gupta A, Liu B, Raza S, Chen QJ, Yang B. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. Plant Commun. 2024;5:100741.
Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. Automated multiplex genome-scale engineering in yeast. Nat Commun. 2017;8:15187.
Li S, An J, Li Y, Zhu X, Zhao D, Wang L, et al. Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nat Commun. 2022;13:7386.