Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

Article 
ADS 

Google Scholar
 

Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 195–204 (2014).

Article 
ADS 

Google Scholar
 

Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31, 265–318 (2012).

Article 

Google Scholar
 

Durfee, C. G., Backus, S., Kapteyn, H. C. & Murnane, M. M. Intense 8-fs pulse generation in the deep ultraviolet. Opt. Lett. 24, 697–699 (1999).

Article 
ADS 

Google Scholar
 

Kida, Y., Liu, J., Teramoto, T. & Kobayashi, T. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Opt. Lett. 35, 1807–1809 (2010).

Article 
ADS 

Google Scholar
 

Baum, P., Lochbrunner, S. & Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett. 29, 1686–1688 (2004).

Article 
ADS 

Google Scholar
 

Baum, P., Lochbrunner, S. & Riedle, E. Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Appl. Phys. B 79, 1027–1032 (2004).

Article 
ADS 

Google Scholar
 

Kosma, K., Trushin, S. A., Schmid, W. E. & Fuss, W. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33, 723–725 (2008).

Article 
ADS 

Google Scholar
 

Graf, U. et al. Intense few-cycle light pulses in the deep ultraviolet. Opt. Express 16, 18956–18963 (2008).

Article 
ADS 

Google Scholar
 

Reiter, F. et al. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 35, 2248–2250 (2010).

Article 
ADS 

Google Scholar
 

Bothschafter, E. M. et al. Collinear generation of ultrashort UV and XUV pulses. Opt. Express 18, 9173–9180 (2010).

Article 
ADS 

Google Scholar
 

Galli, M. et al. Generation of deep ultraviolet sub-2-fs pulses. Opt. Lett. 44, 1308–1311 (2019).

Article 
ADS 

Google Scholar
 

Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

Article 

Google Scholar
 

Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399 (2002).

Article 
ADS 

Google Scholar
 

Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. 1. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

Article 
ADS 

Google Scholar
 

Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

Article 
ADS 

Google Scholar
 

Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 21, 10942–10953 (2013).

Article 
ADS 

Google Scholar
 

Im, S. J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).

Article 
ADS 

Google Scholar
 

Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).

Article 
ADS 

Google Scholar
 

Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).

Article 
ADS 

Google Scholar
 

Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. J. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).

Article 
ADS 

Google Scholar
 

Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

Article 
ADS 

Google Scholar
 

Brahms, C. & Travers, J. C. HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources. APL Photon. 9, 050901 (2024).

Brahams, C., Belli, F. & Travers, J. C. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Opt. Lett. 45, 4456–4459 (2020).

Article 
ADS 

Google Scholar
 

Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).

Article 
ADS 

Google Scholar
 

Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Pulses (Springer, 2000).

Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002).

Article 
ADS 

Google Scholar
 

Kosuge, A. et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 97, 263901 (2006).

Article 
ADS 

Google Scholar
 

Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).

Article 
ADS 

Google Scholar
 

Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).

Article 
ADS 

Google Scholar
 

Brahms, C. & Travers, J. C. Luna.jl. Zenodo https://zenodo.org/badge/latestdoi/190623784 (2022).

Kitamura, R., Pilon, L. & Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118–8133 (2007).

Article 
ADS 

Google Scholar
 

Kotsina, N., Brahms, C., Jackson, S. L., Travers, J. C. & Townsend, D. Spectroscopic application of few-femtosecond deep-ultraviolet laser pulses from resonant dispersive wave emission in a hollow capillary fibre. Chem. Sci. 13, 9586–9594 (2022).

Article 

Google Scholar
 

Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV–vis pump pulses. Optica 11, 1320–1323 (2024).

Article 
ADS 

Google Scholar
 

Wanie, V. et al. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 630, 109–115 (2024).

Article 
ADS 

Google Scholar
 

Escoto, E., Tajalli, A., Nagy, T. & Steinmeyer, G. Advanced phase retrieval for dispersion scan: a comparative study. J. Opt. Soc. Am. B 35, 8–19 (2018).

Article 
ADS 

Google Scholar
 

Geib, N. C., Zilk, M., Pertsch, T. & Eilenberger, F. Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses. Optica 6, 495–505 (2019).

Article 
ADS 

Google Scholar
 

Dorrer, C. & Walmsley, I. A. Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction. J. Opt. Soc. Am. B 19, 1019–1029 (2002).

Article 
ADS 

Google Scholar
 

Carlström, S., Spanner, M. & Patchkovskii, S. General time-dependent configuration-interaction singles. I. Molecular case. Phys. Rev. A 106, 043104 (2022).

Article 
ADS 

Google Scholar
 

Carlström, S., Bertolino, M., Dahlström, J. M. & Patchkovskii, S. General time-dependent configuration-interaction singles. II. Atomic case. Phys. Rev. A 106, 042806 (2022).

Article 
ADS 

Google Scholar
 

Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

Article 
ADS 

Google Scholar
 

Varshalovich, D. A., Moskalev, A. N. & Khersonskii, V. K. Quantum Theory of Angular Momentum (World Scientific, 1988).

Manolopoulos, D. E. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552–9559 (2002).

Article 
ADS 

Google Scholar
 

Tao, L. & Scrinzi, A. Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J. Phys. 14, 013021 (2012).

Article 
ADS 

Google Scholar
 

Morales, F., Bredtmann, T. & Patchkovskii, S. iSURF: a family of infinite-time surface flux methods. J. Phys. B 49, 245001 (2016).

Article 
ADS 

Google Scholar
 

Saloman, E. B. Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data 33, 765–921 (2004).

Article 
ADS 

Google Scholar
 

Hansen, J. E. & Persson, W. Revised analysis of singly ionized xenon, Xe II. Phys. Scr. 36, 602 (1987).

Article 
ADS 

Google Scholar