Pallansch MA, Oberste MS, Whitton J. Enteroviruses: Polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM, editors. Fields Virology. Vol. 1; 6th ed. Lippincott Williams & Wilkins: Philadelphia, PA, USA; 2013. pp. 490–530.
Stanway G. Structure, function and evolution of picornaviruses. J Gen Virol. 1990;71:2483–501.
Majumdar M, Sharif S, Klapsa D, Wilton T, Alam MM, Fernandez-Garcia MD, et al. Environmental surveillance reveals complex enterovirus circulation patterns in human populations. Open Forum Infect Dis. 2018;5:ofy250.
Zhou J, Shi Y, Miao L, Zhang C, Liu Y. Molecular epidemiology and recombination of enterovirus A71 in mainland China from 1987 to 2017. Int Microbiol. 2021;24:291–9.
Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129:304–9.
van der Sanden S, Koopmans M, Uslu G, van der Avoort H, Dutch working group for clinical Virology. Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. J Clin Microbiol. 2009;47:2826–33.
Chang L-Y, Lin H-Y, Gau SS-F, Lu C-Y, Hsia S-H, Huang Y-C, et al. Enterovirus A71 neurologic complications and long-term sequelae. J Biomed Sci. 2019;26:57.
Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9:1097–105.
Xiao J, Huang K, Lu H, Song Y, Han Z, Zhang M, et al. Genomic epidemiology and phylodynamic analysis of enterovirus A71 reveal its transmission dynamics in Asia. Microbiol Spectr. 2022;10:e01958–22.
Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The history of enterovirus A71 outbreaks and molecular epidemiology in the Asia-Pacific region. J Biomed Sci. 2019;26:75.
Ooi MH, Wong SC, Podin Y, Akin W, del Sel S, Mohan A, et al. Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Clin Infect Dis. 2007;44:646–56.
Takahashi S, Liao Q, Van Boeckel TP, Xing W, Sun J, Hsiao VY, et al. Hand, foot, and mouth disease in China: modeling epidemic dynamics of enterovirus serotypes and implications for vaccination. PLoS Med. 2016;13:e1001958.
Yang B, Liu F, Liao Q, Wu P, Chang Z, Huang J, et al. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. Euro Surveill. 2017;22:16–00824.
Nayak G, Bhuyan SK, Bhuyan R, Sahu A, Kar D, Kuanar A. Global emergence of enterovirus 71: a systematic review. Beni-Suef Univ J Basic Appl Sci. 2022;11:78.
Hassel C, Mirand A, Lukashev A, TerletskaiaLadwig E, Farkas A, Schuffenecker I, et al. Transmission patterns of human enterovirus 71 to, from and among European countries, 2003 to 2013. Euro Surveill. 2015;20:30005.
Zhao J, Li X. Determinants of the transmission variation of hand, foot and mouth disease in China. PLoS ONE. 2016;11:e0163789.
Ghosh S, Kumar M, Santiana M, Mishra A, Zhang M, Labayo H, et al. Enteric viruses replicate in salivary glands and infect through saliva. Nature. 2022;607:345–50.
Chen Y-J, Meng F-Y, Mao Q, Li J-X, Wang H, Liang Z-L, et al. Clinical evaluation for batch consistency of an inactivated enterovirus 71 vaccine in a large-scale phase 3 clinical trial. Hum Vaccin Immunother. 2014;10:1366–72.
Li R, Liu L, Mo Z, Wang X, Xia J, Liang Z, et al. An inactivated enterovirus 71 vaccine in healthy children. N Engl J Med. 2014;370:829–37.
Zhu F, Xu W, Xia J, Liang Z, Liu Y, Zhang X, et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N Engl J Med. 2014;370:818–28.
Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res. 2009;139:240–52.
Lozano G, MartÃnez-Salas E. Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol. 2015;12:113–20.
Lin J-Y, Chen T-C, Weng K-F, Chang S-C, Chen L-L, Shih S-R. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci. 2009;16:103.
Ke Y-Y, Chen Y-C, Lin T-H. Structure of the virus capsid protein VP1 of enterovirus 71 predicted by some homology modeling and molecular docking studies. J Comput Chem. 2006;27:1556–70.
Li C, Wang H, Shih S-R, Chen T-C, Li M-L. The efficacy of viral capsid inhibitors in human enterovirus infection and associated diseases. Curr Med Chem. 2007;14:847–56.
Kiener TK, Jia Q, Lim XF, He F, Meng T, Kwong Chow VT, et al. Characterization and specificity of the linear epitope of the enterovirus 71 VP2 protein. Virol J. 2012;9:55.
Jia Q, Ng Q, Chin W, Meng T, Chow VTK, Wang C-I, et al. Effective in vivo therapeutic IgG antibody against VP3 of enterovirus 71 with receptor-competing activity. Sci Rep. 2017;7:46402.
Cao J, Qu M, Liu H, Wan X, Li F, Hou A, et al. Myristoylation of EV71 VP4 is essential for infectivity and interaction with membrane structure. Virol Sin. 2020;35(5):599–613.
Yang X, Aloise C, van Vliet ALW, Zwaagstra M, Lyoo H, Cheng A, et al. Proteolytic activities of enterovirus 2A do not depend on its interaction with SETD3. Viruses. 2022;14:1360.
Mu Z, Wang B, Zhang X, Gao X, Qin B, Zhao Z, et al. Crystal structure of 2A proteinase from Hand, foot and mouth disease virus. J Mol Biol. 2013;425:4530–43.
Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, et al. DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71. Cell Res. 2011;21:1271–5.
Guan H, Tian J, Qin B, Wojdyla JA, Wang B, Zhao Z, et al. Crystal structure of 2 c helicase from enterovirus 71. Sci Adv. 2017;3:e1602573.
Liu Y, Lv P, Wang W, Zhang J, Zhou X, Qiu Y et al. Structural insight into EV-A71 3A protein and its interaction with a peptide inhibitor. Virol Sin. 2023;S1995-820X(23)00112-8.
Chen C, Wang Y, Shan C, Sun Y, Xu P, Zhou H, et al. Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer vpg: implication for a trans mechanism of VPg uridylylation. J Virol. 2013;87:5755–68.
Wen W, Qi Z, Wang J. The function and mechanism of enterovirus 71 (EV71) 3 c protease. Curr Microbiol. 2020;77:1968–75.
Wang L-C, Chen S-O, Chang S-P, Lee Y-P, Yu C-K, Chen C-L, et al. Enterovirus 71 proteins 2A and 3D antagonize the antiviral activity of gamma interferon via signaling attenuation. J Virol. 2015;89:7028–37.
Brown BA, Pallansch MA. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res. 1995;39:195–205.
Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG. Crystal structure of human enterovirus 71. Science. 2012;336:1274.
Shih SR, Li YS, Chiou CC, Suen PC, Lin TY, Chang LY, et al. Expression of capsid [correction of caspid] protein VP1 for use as antigen for the diagnosis of enterovirus 71 infection. J Med Virol. 2000;61:228–34.
Plevka P, Perera R, Yap ML, Cardosa J, Kuhn RJ, Rossmann MG. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci U S A. 2013;110:5463–7.
Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–53.
Rossmann MG, He Y, Kuhn RJ. Picornavirus-receptor interactions. Trends Microbiol. 2002;10:324–31.
Cai Q, Yameen M, Liu W, Gao Z, Li Y, Peng X, et al. Conformational plasticity of the 2A proteinase from enterovirus 71. J Virol. 2013;87:7348–56.
Mj HT, Mg N, Cw M, Jj A, Fw D et al. S,. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell [Internet]. 1986 [cited 2024 Jun 2];45. Available from: https://pubmed.ncbi.nlm.nih.gov/3011278/
Hwang Y-C, Chen W, Yates MV. Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo. Appl Environ Microbiol. 2006;72:3710–5.
Supasorn O, Tongtawe P, Srimanote P, Rattanakomol P, Thanongsaksrikul J. A nonstructural 2B protein of enterovirus A71 increases cytosolic Ca2 + and induces apoptosis in human neuroblastoma SH-SY5Y cells. J Neurovirol. 2020;26:201–13.
Tang W-F, Yang S-Y, Wu B-W, Jheng J-R, Chen Y-L, Shih C-H, et al. Reticulon 3 binds the 2 C protein of enterovirus 71 and is required for viral replication. J Biol Chem. 2007;282:5888–98.
Xiao X, Lei X, Zhang Z, Ma Y, Qi J, Wu C, et al. Enterovirus 3A facilitates viral replication by promoting phosphatidylinositol 4-kinase IIIβ-ACBD3 interaction. J Virol. 2017;91:e00791-17.
Nagy PD, Strating JRPM, van Kuppeveld FJM. Building viral replication organelles: close encounters of the membrane types. PLoS Pathog. 2016;12:e1005912.
Sasaki J, Ishikawa K, Arita M, Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J. 2012;31:754–66.
Chalupska D, Różycki B, Humpolickova J, Faltova L, Klima M, Boura E. Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci Rep. 2019;9:567.
Horova V, Lyoo H, Różycki B, Chalupska D, Smola M, Humpolickova J, et al. Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog. 2019;15:e1007962.
Klima M, Tóth DJ, Hexnerova R, Baumlova A, Chalupska D, Tykvart J, et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci Rep. 2016;6:23641.
Tan YW, Yam WK, Kooi RJW, Westman J, Arbrandt G, Chu JJH. Novel capsid binder and PI4KIIIbeta inhibitors for EV-A71 replication inhibition. Sci Rep-uk. 2021;11:9719.
Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, et al. Crystal structure of human enterovirus 71 3 C protease. J Mol Biol. 2011;408:449–61.
Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993;57:781–822.
Kusov YY, Gauss-Müller V. In vitro RNA binding of the hepatitis A virus proteinase 3 C (HAV 3Cpro) to secondary structure elements within the 5’ terminus of the HAV genome. RNA. 1997;3:291–302.
Mondal S, Sarvari G, Boehr DD. Picornavirus 3 c proteins intervene in host cell processes through proteolysis and interactions with RNA. Viruses. 2023;15:2413.
Ferrer-Orta C, Ferrero DS, Verdaguer N. Dual role of the foot-and-mouth disease virus 3B1 protein in the replication complex: as protein primer and as an essential component to recruit 3Dpol to membranes. PLoS Pathog. 2023;19:e1011373.
Wang J, Ptacek JB, Kirkegaard K, Bullitt E. Double-membraned liposomes sculpted by poliovirus 3AB protein. J Biol Chem. 2013;288:27287–98.
Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J et al. Enterovirus A71 Proteins: Structure and Function. Front Microbiol [Internet]. 2018 [cited 2025 Feb 16];9. Available from: https://www.frontiersin.org/journals/microbiology/articles/https://doi.org/10.3389/fmicb.2018.00286/full
Durk RC, Singh K, Cornelison CA, Rai DK, Matzek KB, Leslie MD, et al. Inhibitors of foot and mouth disease virus targeting a novel pocket of the RNA-dependent RNA polymerase. PLoS ONE. 2010;5:e15049.
Nie Z, Zhai F, Zhang H, Zheng H, Pei J. The multiple roles of viral 3Dpol protein in picornavirus infections. Virulence. 2024;15:2333562.
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15:798–801.
Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15:794–7.
Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J. 2009;6:141.
Yang S-L, Chou Y-T, Wu C-N, Ho M-S. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol. 2011;85:11809–20.
Tan CW, Poh CL, Sam I-C, Chan YF. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol. 2013;87:611–20.
Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 2012;86:5686–96.
Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19:424–9.
Panjwani A, Strauss M, Gold S, Wenham H, Jackson T, Chou JJ, et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 2014;10:e1004294.
Hussain KM, Leong KLJ, Ng MM-L, Chu JJH. The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71. J Biol Chem. 2011;286:309–21.
Liu Y, Sheng J, van Vliet ALW, Buda G, van Kuppeveld FJM, Rossmann MG. Molecular basis for the acid-initiated uncoating of human enterovirus D68. Proc Natl Acad Sci U S A. 2018;115:E12209–17.
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, et al. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. PLoS Pathog. 2024;20:e1012511.
Baggen J, Thibaut HJ, Strating JRPM, van Kuppeveld FJM. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol. 2018;16:368–81.
Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, et al. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature. 2017;541:412–6.
Huang S-C, Chang C-L, Wang P-S, Tsai Y, Liu H-S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 2009;81:1241–52.
Lai JKF, Sam I-C, Chan YF. The autophagic machinery in enterovirus infection. Viruses. 2016;8:32.
Miah M, Davis AM, Hannoun C, Said JS, Fitzek M, Preston M, et al. Identification of epidermal growth factor receptor-tyrosine kinase inhibitor targeting the VP1 pocket of human rhinovirus. Antimicrob Agents Chemother. 2024;68:e0106423.
Huang Y-L, Huang S-W, Shen C-Y, Cheng D, Wang J-R. Conserved residues adjacent to ß-barrel and loop intersection among enterovirus VP1 affect viral replication: potential target for anti-enteroviral development. Viruses. 2022;14:364.
Huang Y-L, Lin T-M, Wang S-Y, Wang J-R. The role of conserved arginine and proline residues in enterovirus VP1 protein. J Microbiol Immunol Infect. 2022;55:590–7.
Lalani S, Gew LT, Poh CL. Antiviral peptides against enterovirus A71 causing hand, foot and mouth disease. Peptides. 2021;136:170443.
Lin T-Y, Chu C, Chiu C-H. Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J Infect Dis. 2002;186:1161–4.
Weng T-Y, Chen L-C, Shyu H-W, Chen S-H, Wang J-R, Yu C-K, et al. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antivir Res. 2005;67:31–7.
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–71.
Brice DC, Diamond G. Antiviral activities of human host defense peptides. Curr Med Chem. 2020;27:1420–43.
Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, et al. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antivir Res. 2021;187:105021.
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv. 2022;59:107962.
Isogai E, Isogai H, Matuo K, Hirose K, Kowashi Y, Okumuara K, et al. Sensitivity of genera Porphyromonas and Prevotella to the bactericidal action of C-terminal domain of human CAP18 and its analogues. Oral Microbiol Immunol. 2003;18:329–32.
Fan T, Liu B, Yao H, Chen X, Yang H, Guo S, et al. Cathelicidin peptide analogues inhibit EV71 infection through blocking viral entry and uncoating. PLoS Pathog. 2024;20:e1011967.
Tan CW, Chan YF, Sim KM, Tan EL, Poh CL. Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1. PLoS ONE. 2012;7:e34589.
Abd-Aziz N, Lee MF, Ong S-K, Poh CL. Antiviral activity of SP81 peptide against enterovirus A71 (EV-A71). Virology. 2024;589:109941.
Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, et al. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol. 2012;157:669–79.
Tijsma A, Franco D, Tucker S, Hilgenfeld R, Froeyen M, Leyssen P, et al. The capsid binder vapendavir and the novel protease inhibitor SG85 inhibit enterovirus 71 replication. Antimicrob Agents Chemother. 2014;58:6990–2.
Rivero-Buceta E, Doyagüez EG, Colomer I, Quesada E, Mathys L, Noppen S, et al. Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. Eur J Med Chem. 2015;106:34–43.
Rivero-Buceta E, Sun L, MartÃnez-Gualda B, Doyagüez EG, Donckers K, Quesada E, et al. Optimization of a class of tryptophan dendrimers that inhibit HIV replication leads to a selective, specific, and low-nanomolar inhibitor of clinical isolates of enterovirus A71. Antimicrob Agents Chemother. 2016;60:5064–7.
Sun L, Lee H, Thibaut HJ, Lanko K, Rivero-Buceta E, Bator C, et al. Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathog. 2019;15:e1007760.
MartÃnez-Gualda B, Sun L, MartÃ-Marà O, Noppen S, Abdelnabi R, Bator CM, et al. Scaffold simplification strategy leads to a novel generation of dual human immunodeficiency virus and enterovirus-A71 entry inhibitors. J Med Chem. 2020;63:349–68.
MartÃ-Marà O, MartÃnez-Gualda B, de la Puente-Secades S, Mills A, Quesada E, Abdelnabi R, et al. Double arylation of the indole side chain of tri- and tetrapodal tryptophan derivatives renders highly potent HIV-1 and EV-A71 entry inhibitors†. J Med Chem. 2021;64:10027–46.
Ruiz-Santaquiteria M, Illescas BM, Abdelnabi R, Boonen A, Mills A, MartÃ-Marà O, et al. Multivalent tryptophan- and tyrosine-containing [60]fullerene hexa-adducts as dual HIV and enterovirus A71 entry inhibitors. Chemistry. 2021;27:10700–10.
MartÃ-Marà O, Abdelnabi R, Schols D, Neyts J, Camarasa M-J, Gago F, et al. Insertion of an amphipathic linker in a tetrapodal tryptophan derivative leads to a novel and highly potent entry inhibitor of enterovirus A71 clinical isolates. Int J Mol Sci. 2023;24:3539.
Lim TYM, Jaladanki CK, Wong YH, Yogarajah T, Fan H, Chu JJH. Tanomastat exerts multi-targeted inhibitory effects on viral capsid dissociation and RNA replication in human enteroviruses. EBioMedicine. 2024;107:105277.
Hsieh C-F, Chen Y-L, Lin G-H, Chan YF, Hsieh P-W, Horng J-T. 3,4-dicaffeoylquinic acid from the medicinal plant Ilex kaushue disrupts the interaction between the five-fold axis of enterovirus A-71 and the heparan sulfate receptor. J Virol. 2022;96:e0054221.
M A, T W, H S. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. The Journal of general virology [Internet]. 2008 [cited 2024 Jun 2];89. Available from: https://pubmed.ncbi.nlm.nih.gov/18796721/
Nishimura Y, McLaughlin NP, Pan J, Goldstein S, Hafenstein S, Shimizu H, et al. The suramin derivative NF449 interacts with the 5-fold vertex of the enterovirus A71 capsid to prevent virus attachment to PSGL-1 and Heparan sulfate. PLoS Pathog. 2015;11:e1005184.
Lalani SS, Anasir MI, Poh CL. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complement Med Ther. 2020;20:97.
Lalani S, Masomian M, Poh CL. Functional insights into Silymarin as an antiviral agent against enterovirus A71 (EV-A71). Int J Mol Sci. 2021;22:8757.
Sun J, Ma X, Sun L, Zhang Y, Hao C, Wang W. Inhibitory effects and mechanisms of proanthocyanidins against enterovirus 71 infection. Virus Res. 2023;329:199098.
Falah N, Montserret R, Lelogeais V, Schuffenecker I, Lina B, Cortay J-C, et al. Blocking human enterovirus 71 replication by targeting viral 2A protease. J Antimicrob Chemother. 2012;67:2865–9.
Chen B, Wang Y, Pei X, Wang S, Zhang H, Peng Y. Cellular caspase-3 contributes to EV-A71 2Apro-mediated down-regulation of IFNAR1 at the translation level. Virol Sin. 2020;35:64–72.
Zheng W, Zhou Z, Rui Y, Ye R, Xia F, Guo F, et al. Traf3 activates STING-mediated suppression of EV-A71 and target of viral evasion. Signal Transduct Target Ther. 2023;8:79.
Chen T, Grauffel C, Yang W-Z, Chen Y-P, Yuan HS, Lim C. Efficient strategy to design protease inhibitors: application to enterovirus 71 2A protease. ACS Bio Med Chem Au. 2022;2:437–49.
Liang Q, Shi S, Zhang Q, Wang Y, Ye S, Xu B. Etoposide targets 2A protease to inhibit enterovirus 71 replication. Microbiol Spectr. 2025;13:e0220024.
Binford SL, Maldonado F, Brothers MA, Weady PT, Zalman LS, Meador JW, et al. Conservation of amino acids in human rhinovirus 3 C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3 C protease inhibitor. Antimicrob Agents Chemother. 2005;49:619–26.
Zhang X, Song Z, Qin B, Zhang X, Chen L, Hu Y, et al. Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antivir Res. 2013;97:264–9.
Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, et al. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother. 2003;47:3907–16.
Lacroix C, George S, Leyssen P, Hilgenfeld R, Neyts J. The enterovirus 3 C protease inhibitor SG85 efficiently blocks rhinovirus replication and is not cross-resistant with rupintrivir. Antimicrob Agents Chemother. 2015;59:5814–8.
Sripattaraphan A, Sanachai K, Chavasiri W, Boonyasuppayakorn S, Maitarad P, Rungrotmongkol T. Computational screening of newly designed compounds against coxsackievirus A16 and enterovirus A71. Molecules. 2022;27:1908.
Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, et al. Design, synthesis, and biological evaluation of peptidomimetic aldehydes as broad-spectrum inhibitors against enterovirus and SARS-CoV-2. J Med Chem. 2022;65:2794–808.
Xu B, Liu M, Ma S, Ma Y, Liu S, Shang L, et al. 4-Iminooxazolidin-2-One as a bioisostere of cyanohydrin suppresses EV71 proliferation by targeting 3Cpro. Microbiol Spectr. 2021;9:e0102521.
Qin B, Craven GB, Hou P, Chesti J, Lu X, Child ES, et al. Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3 C and SARS-CoV-2 main protease. Acta Pharm Sin B. 2022;12:3924–33.
Wei Y, Hu D, Li D, Hu K, Zhang Q, Liu H, et al. Antiviral effects and mechanisms against EV71 of the novel 2-benzoxyl-phenylpyridine derivatives. Eur J Pharm Sci. 2023;186:106445.
Yao C, Xi C, Hu K, Gao W, Cai X, Qin J, et al. Inhibition of enterovirus 71 replication and viral 3 C protease by Quercetin. Virol J. 2018;15:116.
Cao Z, Ding Y, Ke Z, Cao L, Li N, Ding G, et al. Luteoloside acts as 3 c protease inhibitor of enterovirus 71 in vitro. PLoS ONE. 2016;11:e0148693.
Lin Y-J, Chang Y-C, Hsiao N-W, Hsieh J-L, Wang C-Y, Kung S-H, et al. Fisetin and Rutin as 3 c protease inhibitors of enterovirus A71. J Virol Methods. 2012;182:93–8.
Shi S, Xie L, Ma S, Xu B, An H, Ye S, et al. Computational and experimental studies of Salvianolic acid A targets 3 C protease to inhibit enterovirus 71 infection. Front Pharmacol. 2023;14:1118584.
Lochaiyakun N, Srimanote P, Khantisitthiporn O, Thanongsaksrikul J. Novel anti-Enterovirus A71 compounds discovered by repositioning antivirals from the open-source MMV pandemic response box. Pharmaceuticals (Basel). 2024;17:785.
Zuo J, Quinn KK, Kye S, Cooper P, Damoiseaux R, Krogstad P. Fluoxetine is a potent inhibitor of coxsackievirus replication. Antimicrob Agents Chemother. 2012;56:4838–44.
Bauer L, Manganaro R, Zonsics B, Hurdiss DL, Zwaagstra M, Donselaar T, et al. Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2 C. PLoS Biol. 2020;18:e3000904.
Tang Q, Xu Z, Jin M, Shu T, Chen Y, Feng L, et al. Identification of dibucaine derivatives as novel potent enterovirus 2 C helicase inhibitors: in vitro, in vivo, and combination therapy study. Eur J Med Chem. 2020;202:112310.
Kejriwal R, Evans T, Calabrese J, Swistak L, Alexandrescu L, Cohen M, et al. Development of enterovirus antiviral agents that target the viral 2 C protein. ChemMedChem. 2023;18:e202200541.
Fang Y, Wang C, Wang C, Yang R, Bai P, Zhang X-Y, et al. Antiviral peptides targeting the helicase activity of enterovirus nonstructural protein 2 C. J Virol. 2021;95:e02324-20.
Cui B, Yang G, Yan H, Wu S, Wang K, Wang H, et al. UBE3C restricts EV-A71 replication by ubiquitination-dependent degradation of 2 C. J Virol. 2024;98:e0133524.
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, et al. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol. 2024;15:1365521.
Wang X, Hu Z, Zhang W, Wu S, Hao Y, Xiao X, et al. Inhibition of lysosome-tethered Ragulator-Rag-3D complex restricts the replication of enterovirus 71 and Coxsackie A16. J Cell Biol. 2023;222:e202303108.
Xu N, Yang J, Zheng B, Zhang Y, Cao Y, Huan C, et al. The pyrimidine analog FNC potently inhibits the replication of multiple enteroviruses. J Virol. 2020;94:e00204–20.
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, et al. Mechanism and spectrum of inhibition of a 4’-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem. 2024;300:107514.
Xu Y, Groaz E, Rihon J, Herdewijn P, Lescrinier E. Synthesis, antiviral activity, and computational study of β-d-xylofuranosyl nucleoside phosphonates. Eur J Med Chem. 2023;255:115379.
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses. classification, diseases they cause, and approaches to development of antiviral drugs. Biochemistry (Moscow). 2017;82:1615–31.
Lu W-W, Kung F-Y, Deng P-A, Lin Y-C, Lin C-W, Kung S-H. Development of a fluorescence resonance energy transfer-based intracellular assay to identify novel enterovirus 71 antivirals. Arch Virol. 2017;162:713–20.
Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antivir Res. 2014;109:30–41.
Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J. 2011;8:483.
Li Z, Ning S, Su X, Liu X, Wang H, Liu Y, et al. Enterovirus 71 antagonizes the inhibition of the host intrinsic antiviral factor A3G. Nucleic Acids Res. 2018;46:11514–27.
Wang H, Zhong M, Li Y, Li K, Wu S, Guo T, et al. APOBEC3G is a restriction factor of EV71 and mediator of IMB-Z antiviral activity. Antiviral Res. 2019;165:23–33.
Tang Q, Li S, Du L, Chen S, Gao J, Cai Y, et al. Emetine protects mice from enterovirus infection by inhibiting viral translation. Antivir Res. 2020;173:104650.
Davila-Calderon J, Patwardhan NN, Chiu L-Y, Sugarman A, Cai Z, Penutmutchu SR, et al. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat Commun. 2020;11:4775.
Dan X, Wan Q, Yi L, Lu J, Jiao Y, Li H, et al. Hsp27 responds to and facilitates enterovirus A71 replication by enhancing viral internal ribosome entry site-mediated translation. J Virol. 2019;93:e02322-18.
Periferakis A, Periferakis A-T, Troumpata L, Periferakis K, Scheau A-E, Savulescu-Fiedler I, et al. Kaempferol: a review of current evidence of its antiviral potential. Int J Mol Sci. 2023;24:16299.
Gunaseelan S, Wong KZ, Min N, Sun J, Ismail NKBM, Tan YJ, et al. Prunin suppresses viral IRES activity and is a potential candidate for treating enterovirus A71 infection. Sci Transl Med. 2019;11:eaar5759.
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus A-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol. 2023;205:334.
He J, Xiong W, Zhao L, Liu B, Huang Y. Anti-α-glucosidase, anti-proliferative and anti-enterovirus 71 activity of secondary metabolites identified from Grifola frondosa. Plant Foods Hum Nutr. 2023;78:783–9.
Cao Y, Lei E, Li L, Ren J, He X, Yang J, et al. Antiviral activity of Mulberroside C against enterovirus A71 in vitro and in vivo. Eur J Pharmacol. 2021;906:174204.
Olasunkanmi OI, Fei Y, Avala Ntsigouaye J, Yi M, Wang Y, Liu J et al. Antiviral activity of trans-Hexenoic acid against coxsackievirus B and enterovirus A71. Antimicrob Agents Chemother. 2023;67(3):e00868–22.
Lin W-Y, Yu Y-J, Jinn T-R. Evaluation of the virucidal effects of Rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J. 2019;16:94.
Zhang Q-Y, Li J-Q, Li Q, Zhang Y, Zhang Z-R, Li X-D, et al. Identification of Fangchinoline as a broad-spectrum enterovirus inhibitor through reporter virus based high-content screening. Virol Sin. 2024;39(2):301–8.
Zou X, Wu J, Gu J, Shen L, Mao L. DNA aptamer against EV-A71 VP1 protein: selection and application. Virol J. 2021;18:164.
Lin Z, Li Y, Xu T, Guo M, Wang C, Zhao M, et al. Inhibition of enterovirus 71 by selenium nanoparticles loaded with SiRNA through Bax signaling pathways. ACS Omega. 2020;5:12495–500.
Rattanapisit K, Chao Z, Siriwattananon K, Huang Z, Phoolcharoen W. Plant-produced anti-Enterovirus 71 (EV71) monoclonal antibody efficiently protects mice against EV71 infection. Plants (Basel). 2019;8:560.
Ang WX, Tan SH, Wong KT, Perera D, Kuppusamy UR, Ong KC. Antiviral activity of povidone-iodine gargle and mouthwash solution against enterovirus A71, coxsackieviruses A16, A10 and A6. Trop Biomed. 2024;41:241–50.
Roux H, Touret F, Coluccia A, Khoumeri O, Di Giorgio C, Majdi C, et al. New potent EV-A71 antivirals targeting capsid. Eur J Med Chem. 2024;276:116658.
Pei Z, Wang H, Zhao Z, Chen X, Huan C, Zhang W. Chemokine PF4 inhibits EV71 and CA16 infections at the entry stage. J Virol. 2022;96:e0043522.
Yi K, Xie L, Li Y. Monoclonal antibody targeting a conserved N-terminal epitope on 2apro of enteroviruses. Monoclon Antib Immunodiagn Immunother. 2019;38:220–3.
Hu Y, Kitamura N, Musharrafieh R, Wang J. Discovery of potent and broad-spectrum pyrazolopyridine-containing antivirals against enteroviruses D68, A71, and coxsackievirus B3 by targeting the viral 2 C protein. J Med Chem. 2021;64:8755–74.
Musharrafieh R, Kitamura N, Hu Y, Wang J. Development of broad-spectrum enterovirus antivirals based on quinoline scaffold. Bioorg Chem. 2020;101:103981.
Li P, Wu S, Xiao T, Li Y, Su Z, Wei W, et al. Design, synthesis, and evaluation of a novel macrocyclic anti-EV71 agent. Bioorg Med Chem. 2020;28:115551.
Li Z, Cui B, Liu X, Wang L, Xian Q, Lu Z, et al. Virucidal activity and the antiviral mechanism of acidic polysaccharides against enterovirus 71 infection in vitro. Microbiol Immunol. 2020;64:189–201.
Liu M, Xu B, Ma Y, Shang L, Ye S, Wang Y. Reversible covalent inhibitors suppress enterovirus 71 infection by targeting the 3 C protease. Antivir Res. 2021;192:105102.
Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS, et al. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3 C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A. 1999;96:11000–7.
Tijsma A, Franco D, Tucker S, Hilgenfeld R, Froeyen M, Leyssen P, et al. The capsid binder vapendavir and the novel protease inhibitor SG85 inhibit enterovirus 71 replication. Antimicrob Agents Chemother. 2014;58:6990–2.
Le TTV, Do P-C. Molecular docking study of various Enterovirus-A71 3 C protease proteins and their potential inhibitors. Front Microbiol. 2022;13:987801.
Sun J, Yogarajah T, Lee RCH, Kaur P, Inoue M, Tan YW, et al. Drug repurposing of pyrimidine analogs as potent antiviral compounds against human enterovirus A71 infection with potential clinical applications. Sci Rep. 2020;10:8159.
Ye W, Yao M, Dong Y, Ye C, Wang D, Liu H, et al. Remdesivir (GS-5734) impedes enterovirus replication through viral RNA synthesis inhibition. Front Microbiol. 2020;11:1105.
Janissen R, Woodman A, Shengjuler D, Vallet T, Lee K-M, Kuijpers L, et al. Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Mol Cell. 2021;81:4467–e44807.
Huang X, Li J, Hong Y, Jiang C, Wu J, Wu M, et al. Antiviral effects of the petroleum ether extract of Tournefortia sibirica L. against enterovirus 71 infection in vitro and in vivo. Front Pharmacol. 2022;13:999798.
Hu J, Wang H, Yang L, Wu S, Li Y, Li Y, et al. Compound IMB-Z inhibits hepatitis B virus replication through increasing APOBEC3G expression and incorporation into viral nucleocapsids. J Glob Antimicrob Resist. 2022;31:371–8.
Tsai F-J, Lin C-W, Lai C-C, Lan Y-C, Lai C-H, Hung C-H, et al. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chem. 2011;128:312–22.
Cao Y, Lei E, Wang X, Qi X, Li L, Ren J, et al. Licochalcone A inhibits enterovirus A71 replication in vitro and in vivo. Antivir Res. 2021;195:105091.
Doctor KZ, Gilmour E, Recarte M, Beatty TR, Shifa I, Stangel M, et al. Automated SSHHPS analysis predicts a potential host protein target common to several neuroinvasive (+)ssRNA viruses. Viruses. 2023;15:542.
Lin D, Dong X, Xiao X, Xiang Z, Lei X, Wang J. Proteomic and phosphoproteomic analysis of responses to enterovirus A71 infection reveals novel targets for antiviral and viral replication. Antivir Res. 2023;220:105761.
Kobayashi K, Koike S. Cellular receptors for enterovirus A71. J Biomed Sci. 2020;27:23.
Feng Q, Zhou H, Zhang X, Liu X, Wang J, Zhang C, et al. Acarbose, as a potential drug, effectively blocked the dynamic metastasis of EV71 from the intestine to the whole body. Infect Genet Evol. 2020;81:104210.
Zhu G, Wu C, Wang Q, Deng D, Lin B, Hu X, et al. Antiviral activity of the HSP90 inhibitor VER-50589 against enterovirus 71. Antivir Res. 2023;211:105553.
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 mechanism of entry: receptors/co-receptors, related pathways and inhibitors. Viruses. 2023;15:785.
Zarif F, Anasir MI, Koh JX, Chew M-F, Poh CL. Stability and antiviral activity of SP40 peptide in human serum. Virus Res. 2021;303:198456.
Cipriani A, La Ferla T, Furukawa TA, Signoretti A, Nakagawa A, Churchill R, et al. Sertraline versus other antidepressive agents for depression. Cochrane Database Syst Rev. 2010;1:CD006117.
Tseng K-C, Hsu B-Y, Ling P, Lu W-W, Lin C-W, Kung S-H. Antidepressant sertraline is a broad-spectrum inhibitor of enteroviruses targeting viral entry through neutralization of endolysosomal acidification. Viruses. 2022;14:109.
Vishakantegowda G, Hwang A, Chakrasali D, Jung P, Lee E, Shin J-Y. Highly potent and selective phosphatidylinositol 4-kinase IIIβ inhibitors as broad-spectrum anti-rhinoviral agents. RSC Med Chem. 2024;15:704–19.
Arita M. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol. 2014;58:239–56.
Roulin PS, Lötzerich M, Torta F, Tanner LB, van Kuppeveld FJM, Wenk MR, et al. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe. 2014;16:677–90.
Luo Z, Liang Y, Tian M, Ruan Z, Su R, Shereen MA, et al. Inhibition of PIKFYVE kinase interferes ESCRT pathway to suppress RNA virus replication. J Med Virol. 2023;95:e28527.
Li X, Zhang J, Xiao Y, Song H, Li Y, Li W, et al. Chemoproteomics enables identification of coatomer subunit zeta-1 targeted by a small molecule for enterovirus A71 inhibition. MedComm. 2024;5:e587.
Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, et al. Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors. J Med Chem. 2019;62:4056–73.
Yang Q, Wu C, Zhu G, Ren F, Lin B, Huang R, et al. ML390 inhibits enterovirus 71 replication by targeting de novo pyrimidine biosynthesis pathway. Antivir Res. 2023;209:105498.
Xu L, Su W, Jin J, Chen J, Li X, Zhang X, et al. Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses. 2014;6:2778–95.
Wu M, Wan Q, Dan X, Wang Y, Chen P, Chen C, et al. Targeting ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect. 2024;13:2368221.
Van Der Schaar HM, Dorobantu CM, Albulescu L, Strating JRPM, Van Kuppeveld FJM. Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol. 2016;24:535–46.
Yang X, Chen J, Lu Z, Huang S, Zhang S, Cai J, et al. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front Microbiol. 2022;13:961942.
Xie H, Yang E, Wang C, Peng C, Ji L. Targeting HDAC11 activity by FT895 restricts EV71 replication. Virus Res. 2023;330:199108.
Huang L, Yue J. The interplay of autophagy and enterovirus. Semin Cell Dev Biol. 2020;101:12–9.
Hao T, Li Y, Fan S, Li W, Wang S, Li S, et al. Design, synthesis and pharmacological evaluation of a novel mTOR-targeted anti-EV71 agent. Eur J Med Chem. 2019;175:172–86.
You Q, Wu J, Lyu R, Cai Y, Jiang N, Liu Y, et al. 6-thioguanine inhibits EV71 replication by reducing BIRC3-mediated autophagy. BMC Microbiol. 2025;25:53.
Li H, Bai Z, Li C, Sheng C, Zhao X. EV71 infection induces cell apoptosis through ROS generation and SIRT1 activation. J Cell Biochem. 2020;121:4321–31.
Cui G, Wang H, Yang C, Zhou X, Wang J, Wang T, et al. Berberine prevents lethal EV71 neurological infection in newborn mice. Front Pharmacol. 2022;13:1027566.
Chen H, Ning Z, Liu X, Su J, Chen D, Lai J, et al. Ebselen inhibits enterovirus A71-induced apoptosis through reactive oxygen species-mediated signaling pathway. Mol Biol Rep. 2023;50:2991–3000.
Zhao D, Guo X, Lin B, Huang R, Li H, Wang Q, et al. Magnolol against enterovirus 71 by targeting Nrf2-SLC7A11-GSH pathway. Biomed Pharmacother. 2024;176:116866.
Song J-H, Mun S-H, Yang H, Kwon YS, Kim S-R, Song M-Y, et al. Antiviral mechanisms of Saucerneol from Saururus chinensis against enterovirus A71, coxsackievirus A16, and coxsackievirus B3: role of mitochondrial ROS and the STING/TKB-1/IRF3 pathway. Viruses. 2023;16:16.
Masomian M, Lalani S, Poh CL. Molecular docking of SP40 peptide towards cellular receptors for enterovirus 71 (EV-A71). Molecules. 2021;26:6576.
Bailly B, Gorle AK, Dirr L, Malde AK, Farrell NP, Berners-Price SJ, et al. Platinum complexes act as shielding agents against virus infection. Chem Commun. 2021;57:4666–9.
Niu Q, Zhou H, Ma X, Jiang Y, Liu C, Wang W, et al. Anti-enterovirus 71 activity of native fucosylated chondroitin sulfates and their derivatives. Carbohydr Polym. 2024;346:122657.
Quan J, Zhang X, Ding Y, Li S, Qiu Y, Wang R, et al. Cucurbit[7]uril as a broad-spectrum antiviral agent against diverse RNA viruses. Virol Sin. 2021;36:1165–76.
Tan JK, Chen R, Lee RCH, Li F, Dai K, Zhou G-C, et al. Discovery of novel Andrographolide derivatives as antiviral inhibitors against human enterovirus A71. Pharmaceuticals (Basel). 2022;15:115.
Ge Q, Zhang Z, Cao Z, Wu D, Xu C, Yao J, et al. Exploration of the in vitro antiviral effects and the active components of Changyanning tablets against enterovirus 71. Drug Des Devel Ther. 2024;18:651–65.
Gao C, Wen C, Li Z, Lin S, Gao S, Ding H, et al. Fludarabine inhibits infection of Zika virus, SFTS phlebovirus, and enterovirus A71. Viruses. 2021;13:774.
Huang L, Fu Q, Dai J-M, Yan B-C, Wang D, Puno P-T, et al. High-content screening of diterpenoids from Isodon species as autophagy modulators and the functional study of their antiviral activities. Cell Biol Toxicol. 2021;37:695–713.
Zhou F, Wan Q, Lu J, Chen Y, Lu G, He M-L. Pim1 impacts enterovirus A71 replication and represents a potential target in antiviral therapy. iScience. 2019;19:715–27.
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, et al. Proteomic and metabonomic analysis uncovering enterovirus A71 reprogramming host cell metabolic pathway. Proteomics. 2023;23:2200362.
Salerno M, Varricchio C, Bevilacqua F, Jochmans D, Neyts J, Brancale A, et al. Rational design of novel nucleoside analogues reveals potent antiviral agents for EV71. Eur J Med Chem. 2023;246:114942.
Du N, Li X-H, Bao W-G, Wang B, Xu G, Wang F. Resveratrol–loaded nanoparticles inhibit enterovirus 71 replication through the oxidative stress–mediated ERS/autophagy pathway. Int J Mol Med. 2019;44:737–49.
Zhao X, Li C, Chiu MC, Qiao R, Jiang S, Wang P, et al. Rock1 is a novel host dependency factor of human enterovirus A71: implication as a drug target. J Med Virol. 2022;94:5415–24.
Zhang X, Hao J, Sun C, Du J, Han Q, Li Q. Total astragalosides decrease apoptosis and pyroptosis by inhibiting enterovirus 71 replication in gastric epithelial cells. Exp Ther Med. 2022;23:237.
Hu B, Chik KK-H, Chan JF-W, Cai J-P, Cao H, Tsang JO-L, et al. Vemurafenib inhibits enterovirus A71 genome replication and virus assembly. Pharmaceuticals (Basel). 2022;15:1067.
Wang H, Chen F, Wang S, Li Y, Liu T, Li Y, et al. Evaluation and mechanism study of Pien tze Huang against EV-A71 infection. Front Pharmacol. 2023;14:1251731.
Kim S-H, Lee J, Jung YL, Hong A, Nam S-J, Lim B-K. Salvianolic acid B inhibits Hand-Foot-Mouth disease enterovirus 71 replication through enhancement of AKT signaling pathway. J Microbiol Biotechnol. 2020;30:38–43.
Xu T, Li Y, Wu H, Chen H, Wu H, Guo M, et al. The inhibition of enterovirus 71 induced apoptosis by Durvillaea antarctica through P53 and STAT1 signaling pathway. J Med Virol. 2021;93:3532–8.
Hao J, Zhang X, Hu R, Lu X, Wang H, Li Y, et al. Metabolomics combined with network pharmacology reveals a role for Astragaloside IV in inhibiting enterovirus 71 replication via PI3K-AKT signaling. J Transl Med. 2024;22:555.
Xia Z, Wang H, Chen W, Wang A, Cao Z. Scorpion venom antimicrobial peptide derivative BmKn2-T5 inhibits enterovirus 71 in the early stages of the viral life cycle in vitro. Biomolecules. 2024;14:545.
Ferreira FJN, Carneiro AS. Ai-driven drug discovery: a comprehensive review. ACS Omega. 2025;10:23889–903.
Dai W, Bi J, Li F, Wang S, Huang X, Meng X, et al. Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses. 2019;11:625.
Dewanjee S, Chakraborty P, Bhattacharya H, Singh SK, Dua K, Dey A, et al. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy. Drug Discov Today. 2023;28:103409.