McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).


Google Scholar
 

Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

Article 

Google Scholar
 

Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

Article 

Google Scholar
 

Valcárcel, G. J., Patera, G., Treps, N. & Fabre, C. Multimode squeezing of frequency combs. Phys. Rev. A 74, 061801 (2006).

Article 

Google Scholar
 

Roslund, J., Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).

Article 

Google Scholar
 

Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

Article 

Google Scholar
 

Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

Article 

Google Scholar
 

Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

Article 

Google Scholar
 

Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and skin effect. Phys. Rev. Lett. 130, 203605 (2023).

Article 
MathSciNet 

Google Scholar
 

Flynn, V. P., Cobanera, E. & Viola, L. Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians. N. J. Phys. 22, 083004 (2020).

Article 
MathSciNet 

Google Scholar
 

Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).

Article 

Google Scholar
 

Luo, X.-W., Zhang, C. & Du, S. Quantum squeezing and sensing with pseudo-anti-parity-time symmetry. Phys. Rev. Lett. 128, 173602 (2022).

Article 
MathSciNet 

Google Scholar
 

Uddin, S. Z. et al. Noise-immune quantum correlations of intense light. Nat. Photon. 19, 751–757 (2025).

Article 

Google Scholar
 

Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

Article 
MathSciNet 

Google Scholar
 

Braunstein, S. L. & Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

Article 
MathSciNet 

Google Scholar
 

Leefmans, C. et al. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys. 18, 442–449 (2022).

Article 

Google Scholar
 

Wang, Y.-X. & Clerk, A. A. Non-Hermitian dynamics without dissipation in quantum systems. Phys. Rev. A 99, 063834 (2019).

Article 

Google Scholar
 

Roy, A., Jahani, S., Langrock, C., Fejer, M. & Marandi, A. Spectral phase transitions in optical parametric oscillators. Nat. Commun. 12, 835 (2021).

Article 

Google Scholar
 

Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically induced squeezing. Nature 606, 82–87 (2022).

Article 

Google Scholar
 

Slim, J. J. et al. Optomechanical realization of the bosonic Kitaev chain. Nature 627, 767–771 (2024).

Article 

Google Scholar
 

Chembo, Y. K. Quantum dynamics of Kerr optical frequency combs below and above threshold: spontaneous four-wave mixing, entanglement, and squeezed states of light. Phys. Rev. A 93, 033820 (2016).

Article 

Google Scholar
 

Yang, Z. et al. A squeezed quantum microcomb on a chip. Nat. Commun. 12, 4781 (2021).

Article 

Google Scholar
 

Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

Article 

Google Scholar
 

Jahanbozorgi, M. et al. Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits. Optica 10, 1100–1101 (2023).

Article 

Google Scholar
 

Javid, U. A. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023).

Article 

Google Scholar
 

Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

Article 

Google Scholar
 

Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

Article 

Google Scholar
 

Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

Article 

Google Scholar
 

Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

Article 

Google Scholar
 

Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

Article 

Google Scholar
 

Moille, G., Menyuk, C., Chembo, Y. K., Dutt, A. & Srinivasan, K. Synthetic frequency lattices from an integrated dispersive multi-color soliton. Preprint at https://arxiv.org/abs/2210.09036 (2022).

Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).

Article 

Google Scholar
 

Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

Article 

Google Scholar
 

Bensemhoun, A. et al. Multipartite entanglement in bright frequency combs out of microresonators. Phys. Lett. A 493, 129272 (2024).

Article 

Google Scholar
 

Guidry, M. A., Lukin, D. M., Yang, K. Y. & Vučković, J. Multimode squeezing in soliton crystal microcombs. Optica 10, 694–701 (2023).

Article 

Google Scholar
 

Gouzien, E. et al. Hidden and detectable squeezing from microresonators. Phys. Rev. Res. 5, 023178 (2023).

Article 

Google Scholar
 

Rüter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

Article 

Google Scholar
 

Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).

Article 

Google Scholar
 

Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

Article 

Google Scholar
 

Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

Article 

Google Scholar
 

Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

Article 

Google Scholar
 

Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

Article 

Google Scholar
 

Coen, S. & Haelterman, M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Opt. Lett. 26, 39–41 (2001).

Article 

Google Scholar
 

Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

Article 

Google Scholar
 

Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

Article 

Google Scholar
 

Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

Article 

Google Scholar
 

Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019).

Article 

Google Scholar
 

Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

Article 

Google Scholar
 

Dutt, A. et al. Creating boundaries along a synthetic frequency dimension. Nat. Commun. 13, 3377 (2022).

Article 

Google Scholar
 

Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

Article 

Google Scholar
 

Marino, A. M., Stroud, J., Wong, V., Bennink, R. S. & Boyd, R. W. Bichromatic local oscillator for detection of two-mode squeezed states of light. J. Opt. Soc. Am. B 24, 335–339 (2007).

Article 

Google Scholar
 

Wang, Z. et al. Large-scale cluster quantum microcombs. Light Sci. Appl. 14, 164 (2025).

Article 

Google Scholar
 

Jia, X. et al. Continuous-variable multipartite entanglement in an integrated microcomb. Nature 639, 329–336 (2025).

Article 

Google Scholar
 

Herman, D. I. et al. Squeezed dual-comb spectroscopy. Science 387, 653–658 (2025).

Article 

Google Scholar
 

McCuller, L. et al. Frequency-dependent squeezing for advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

Article 

Google Scholar
 

Leefmans, C. R. et al. Cavity soliton-induced topological edge states. Preprint at https://arxiv.org/abs/2311.04873 (2023).

Flower, C. J. et al. Observation of topological frequency combs. Science 384, 1356–1361 (2024).

Article 

Google Scholar
 

Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

Article 

Google Scholar
 

Wang, W. et al. Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation. Nat. Commun. 13, 5123 (2022).

Article 

Google Scholar
 

Gouzien, E., Tanzilli, S., D’Auria, V. & Patera, G. Morphing supermodes: a full characterization for enabling multimode quantum optics. Phys. Rev. Lett. 125, 103601 (2020).

Article 

Google Scholar
 

Lustig, E., Guidry, M. A., Lukin, D. M., Shanhui, F. & Vučković, J. Quadrature-dependent lattice dynamics of dissipative microcombs data. figshare https://doi.org/10.6084/m9.figshare.29652338 (2025).