Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).

ADS 
MathSciNet 

Google Scholar
 

Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

Article 
MathSciNet 

Google Scholar
 

Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

Article 
ADS 

Google Scholar
 

Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2024).

Article 
ADS 

Google Scholar
 

Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics 14, 350–354 (2020).

Article 
ADS 

Google Scholar
 

Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photonics 16, 519–522 (2022).

Article 
ADS 

Google Scholar
 

Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

Article 

Google Scholar
 

Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Seki, S. & Mochizuki, M. Skyrmions in Magnetic Materials (Springer, 2016).

Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2020).

Article 

Google Scholar
 

Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

Article 
ADS 

Google Scholar
 

Zheng, F. et al. Hopfion rings in a cubic chiral magnet. Nature 623, 718–723 (2023).

Article 
ADS 

Google Scholar
 

Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

Article 
ADS 

Google Scholar
 

Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017).

Article 
ADS 

Google Scholar
 

Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

Article 
ADS 

Google Scholar
 

Raftrey, D. & Fischer, P. Field-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 127, 257201 (2021).

Article 
ADS 

Google Scholar
 

Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

Article 

Google Scholar
 

Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

Article 

Google Scholar
 

Yang, S. et al. Reversible conversion between skyrmions and skyrmioniums. Nat. Commun. 14, 3406 (2023).

Article 
ADS 

Google Scholar
 

Zheng, F. et al. Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet. Nat. Phys. 18, 863–868 (2022).

Article 

Google Scholar
 

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

Article 

Google Scholar
 

Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

Article 
ADS 

Google Scholar
 

Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

Article 
ADS 

Google Scholar
 

Forbes, A., De Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).

Article 
ADS 

Google Scholar
 

Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

Article 
ADS 

Google Scholar
 

Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

Article 

Google Scholar
 

Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. & Chong, C. T. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008).

Article 
ADS 

Google Scholar
 

Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

Article 

Google Scholar
 

Bai, C., Chen, J., Zhang, Y., Zhang, D. & Zhan, Q. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express 28, 10320–10328 (2020).

Article 
ADS 

Google Scholar
 

Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

Article 
ADS 

Google Scholar
 

Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

Article 

Google Scholar
 

Yang, A. et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).

Article 

Google Scholar
 

Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).

Article 
ADS 

Google Scholar
 

Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12, 1092 (2021).

Article 
ADS 

Google Scholar
 

Wang, H. & Fan, S. Photonic spin hopfions and monopole loops. Phys. Rev. Lett. 131, 263801 (2023).

Article 
ADS 

Google Scholar
 

Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

Article 
ADS 

Google Scholar
 

Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Phys. Rev. Appl. 21, 024025 (2024).

Article 
ADS 

Google Scholar
 

Wang, S. et al. Topological structures of energy flow: Poynting vector skyrmions. Phys. Rev. Lett. 133, 073802 (2024).

Article 
ADS 

Google Scholar
 

Lin, Y. J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

Article 
ADS 

Google Scholar
 

Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

Article 
ADS 

Google Scholar
 

Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

Article 

Google Scholar
 

Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photonics 10, 184–189 (2016).

Article 
ADS 

Google Scholar
 

Wang, J. et al. Experimental observation of Berry phases in optical Möbius-strip microcavities. Nat. Photonics 17, 120–125 (2023).

Article 
ADS 

Google Scholar
 

Karnieli, A., Li, Y. & Arie, A. The geometric phase in nonlinear frequency conversion. Front. Phys. 17, 12301 (2022).

Article 
ADS 

Google Scholar
 

Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

Article 

Google Scholar
 

Karnieli, A. & Arie, A. Fully controllable adiabatic geometric phase in nonlinear optics. Opt. Express 26, 4920–4932 (2018).

Article 
ADS 

Google Scholar
 

Scully, M. O., Lamb, W. E. Jr. & Barut, A. On the theory of the Stern–Gerlach apparatus. Found. Phys. 17, 575–583 (1987).

Article 
ADS 
MathSciNet 

Google Scholar
 

Chen, G. et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4, 034003 (2022).

Article 
ADS 

Google Scholar
 

Fu, S. et al. Spin-orbit optical Hall effect. Phys. Rev. Lett. 123, 243904 (2019).

Article 
ADS 

Google Scholar
 

Zhang, X. et al. Photonic spin-orbit coupling induced by deep-subwavelength structured light. Phys. Rev. A 109, 023522 (2024).

Article 
ADS 

Google Scholar
 

Feynman, R. P., Vernon, F. L. Jr. & Hellwarth, R. W. Geometrical representation of the Schrödinger equation for solving Maser problems. J. Appl. Phys. 28, 49–52 (1957).

Article 
ADS 

Google Scholar
 

Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Rev. 77, 297–298 (1950).

Article 
ADS 

Google Scholar
 

Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

Article 
ADS 
MathSciNet 

Google Scholar
 

Karnieli, A., Trajtenberg-Mills, S., Di Domenico, G. & Arie, A. Experimental observation of the geometric phase in nonlinear frequency conversion. Optica 6, 1401–1405 (2019).

Article 
ADS 

Google Scholar
 

Suchowski, H., Porat, G. & Arie, A. Adiabatic processes in frequency conversion. Laser Photonics Rev. 8, 333–367 (2014).

Article 
ADS 

Google Scholar
 

Yesharim, O. et al. Observation of the all-optical Stern–Gerlach effect in nonlinear optics. Nat. Photonics 16, 582–587 (2022).

Article 
ADS 

Google Scholar
 

Karnieli, A. & Arie, A. All-optical Stern-Gerlach Effect. Phys. Rev. Lett. 120, 053901 (2018).

Article 
ADS 

Google Scholar
 

Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).

Article 
ADS 

Google Scholar
 

Ornelas, P., Nape, I., de Koch, M. R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

Article 
ADS 

Google Scholar
 

Gottesman, D. & Chuang, I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

Article 
ADS 

Google Scholar
 

Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).

Article 

Google Scholar
 

Shen, Y. et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 5, 015001 (2023).

Article 
ADS 

Google Scholar
 

Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

Article 
ADS 

Google Scholar
 

Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979).

Article 
ADS 

Google Scholar
 

Hu, X. B. & Rosales-Guzmn, C. Generation and characterization of complex vector modes with digital micromirror devices: a tutorial. J. Opt. 24, 034001 (2022).

Article 
ADS 

Google Scholar
 

Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1–57 (2009).

Article 
ADS 

Google Scholar
 

Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977).

Article 
ADS 

Google Scholar