Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

Article 
ADS 

Google Scholar
 

Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

Article 
ADS 

Google Scholar
 

von Klitzing, K. Essay: quantum Hall effect and the new international system of units. Phys. Rev. Lett. 122, 200001 (2019).

Article 

Google Scholar
 

Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

Article 
ADS 

Google Scholar
 

Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

Article 
ADS 

Google Scholar
 

Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

Article 
MathSciNet 
ADS 

Google Scholar
 

Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

Article 
MathSciNet 
ADS 

Google Scholar
 

Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

Article 
ADS 

Google Scholar
 

Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

Article 
ADS 

Google Scholar
 

Jain, J. K. Composite fermion theory of exotic fractional quantum Hall effect. Annu. Rev. Condens. Matter Phys. 6, 39–62 (2015).

Article 
ADS 

Google Scholar
 

Lin, X., Du, R. & Xie, X. Recent experimental progress of fractional quantum Hall effect: 5/2 filling state and graphene. Natl Sci. Rev. 1, 564–579 (2014).

Article 

Google Scholar
 

Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

Article 
MathSciNet 
ADS 

Google Scholar
 

Halperin, B. I. in The Physics and Chemistry of Oxide Superconductors (eds Iye, Y. & Yasuoka, H.) 439–450 (Springer, 1992).

MacDonald, A. H. Introduction to the physics of the quantum Hall regime. Preprint at https://arxiv.org/abs/cond-mat/9410047 (1994).

Tong, D. Lectures on the quantum Hall effect. Preprint at https://arxiv.org/abs/1606.06687 (2016).

Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

Article 
MathSciNet 
ADS 

Google Scholar
 

Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

Article 

Google Scholar
 

Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

Article 
ADS 

Google Scholar
 

Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

Article 

Google Scholar
 

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

Article 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
ADS 

Google Scholar
 

Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

Article 
ADS 

Google Scholar
 

Nuckolls, K. P. & Yazdani, A. A microscopic perspective on moiré materials. Nat. Rev. Mater. 9, 460–480 (2024).

Article 
ADS 

Google Scholar
 

Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

Article 
ADS 

Google Scholar
 

Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

Article 
ADS 

Google Scholar
 

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

Article 
ADS 

Google Scholar
 

Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

Article 
ADS 

Google Scholar
 

Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

Article 
ADS 

Google Scholar
 

Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

Article 
ADS 

Google Scholar
 

Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

Article 
ADS 

Google Scholar
 

Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

Article 
ADS 

Google Scholar
 

König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

Article 
ADS 

Google Scholar
 

Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

Article 
ADS 

Google Scholar
 

Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. 1, 021014 (2011).

Article 

Google Scholar
 

Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

Article 
ADS 

Google Scholar
 

Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

Article 
ADS 

Google Scholar
 

Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

Article 
ADS 

Google Scholar
 

Lin, Z., Yang, W., Lu, H., Zhai, D. & Yao, W. Fractional Chern insulator states in an isolated flat band of zero Chern number. Preprint at https://arxiv.org/abs/2505.09009 (2025).

Qi, X.-L. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett. 107, 126803 (2011).

Article 
ADS 

Google Scholar
 

Claassen, M., Lee, C. H., Thomale, R., Qi, X.-L. & Devereaux, T. P. Position-momentum duality and fractional quantum Hall effect in Chern insulators. Phys. Rev. Lett. 114, 236802 (2015).

Article 
ADS 

Google Scholar
 

Wang, J., Cano, J., Millis, A. J., Liu, Z. & Yang, B. Exact Landau level description of geometry and interaction in a flatband. Phys. Rev. Lett. 127, 246403 (2021).

Article 
MathSciNet 
ADS 

Google Scholar
 

Ledwith, P. J., Vishwanath, A. & Parker, D. E. Vortexability: a unifying criterion for ideal fractional Chern insulators. Phys. Rev. B 108, 205144 (2023).

Article 
ADS 

Google Scholar
 

Estienne, B., Regnault, N. & Crépel, V. Ideal Chern bands as Landau levels in curved space. Phys. Rev. Res. 5, L032048 (2023).

Article 

Google Scholar
 

Siddharth, A. P., Rahul, R. & Shivaji, L. S. Fractional quantum Hall physics in topological flat bands. C. R. Phys. 14, 816–839 (2013).

Article 

Google Scholar
 

Wu, Y.-L., Bernevig, B. A. & Regnault, N. Zoology of fractional Chern insulators. Phys. Rev. B 85, 075116 (2012).

Article 
ADS 

Google Scholar
 

Behrmann, J., Liu, Z. & Bergholtz, E. J. Model fractional Chern insulators. Phys. Rev. Lett. 116, 216802 (2016).

Article 
ADS 

Google Scholar
 

Roy, R. Band geometry of fractional topological insulators. Phys. Rev. B 90, 165139 (2014).

Article 
ADS 

Google Scholar
 

Wang, Z. & Simon, S. H. A closed band-projected density algebra must be Girvin-MacDonald-Platzman. Phys. Rev. Lett. 134, 136502 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Simon, S. H., Harper, F. & Read, N. Fractional Chern insulators in bands with zero Berry curvature. Phys. Rev. B 92, 195104 (2015).

Article 
ADS 

Google Scholar
 

Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

Article 
ADS 

Google Scholar
 

Neupert, T., Chamon, C., Iadecola, T., Santos, L. H. & Mudry, C. Fractional (Chern and topological) insulators. Phys. Scr. 2015, 014005 (2015).

Article 

Google Scholar
 

Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).

Article 
ADS 

Google Scholar
 

Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

Article 
ADS 

Google Scholar
 

Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

Article 
ADS 

Google Scholar
 

Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

Article 
ADS 

Google Scholar
 

Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

Article 
ADS 

Google Scholar
 

Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

Article 
ADS 

Google Scholar
 

Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

Article 
ADS 

Google Scholar
 

Polshyn, H. et al. Topological charge density waves at half-integer filling of a moiré superlattice. Nat. Phys. 18, 42–47 (2022).

Article 

Google Scholar
 

Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

Article 
ADS 

Google Scholar
 

Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

Article 
ADS 

Google Scholar
 

Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys. Rev. Res. 2, 023237 (2020).

Article 

Google Scholar
 

Abouelkomsan, A., Liu, Z. & Bergholtz, E. J. Particle-hole duality, emergent Fermi liquids, and fractional Chern insulators in moiré flatbands. Phys. Rev. Lett. 124, 106803 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).

Article 

Google Scholar
 

Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

Article 
ADS 

Google Scholar
 

Mera, B. & Ozawa, T. Kähler geometry and Chern insulators: relations between topology and the quantum metric. Phys. Rev. B 104, 045104 (2021).

Article 
ADS 

Google Scholar
 

Mera, B. & Ozawa, T. Engineering geometrically flat Chern bands with Fubini-Study Kähler structure. Phys. Rev. B 104, 115160 (2021).

Article 
ADS 

Google Scholar
 

Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

Article 
ADS 

Google Scholar
 

Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

Article 
ADS 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

Article 
ADS 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

Article 
ADS 

Google Scholar
 

Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

Article 
ADS 

Google Scholar
 

Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).

Article 
ADS 

Google Scholar
 

Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

Article 

Google Scholar
 

Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

Article 
ADS 

Google Scholar
 

Xu, C., Mao, N., Zeng, T. & Zhang, Y. Multiple Chern bands in twisted MoTe2 and possible non-Abelian states. Phys. Rev. Lett. 134, 066601 (2025).

Article 
ADS 

Google Scholar
 

Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

Article 

Google Scholar
 

Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

Article 
ADS 

Google Scholar
 

Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

Article 
ADS 

Google Scholar
 

Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

Article 
ADS 

Google Scholar
 

Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

Article 
ADS 

Google Scholar
 

Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

Article 

Google Scholar
 

Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

Article 
ADS 

Google Scholar
 

Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

Article 
ADS 

Google Scholar
 

Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).

Article 
ADS 

Google Scholar
 

Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

Article 
ADS 

Google Scholar
 

Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

Article 
ADS 

Google Scholar
 

Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).

Article 
ADS 

Google Scholar
 

Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

Article 
ADS 

Google Scholar
 

Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. https://doi.org/10.1038/s41567-025-02804-0 (2025).

Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. https://doi.org/10.1038/s41567-025-02803-1 (2025).

Kang, K. et al. Double quantum spin Hall phase in moiré WSe2. Nano Lett. 24, 14901–14907 (2024).

Article 
ADS 

Google Scholar
 

Abouelkomsan, A. & Fu, L. Non-Abelian spin Hall insulator. Phys. Rev. Res. 7, 023083 (2025).

Article 

Google Scholar
 

Jian, C. M., Cheng, M. & Xu, C. Minimal fractional topological insulator in half-filled conjugate moiré Chern bands. Phys. Rev. X 15, 021063 (2025).


Google Scholar
 

Sodemann Villadiego, I. Halperin states of particles and holes in ideal time reversal invariant pairs of Chern bands and the fractional quantum spin Hall effect in moiré MoTe2. Phys. Rev. B 110, 045114 (2024).

Article 
ADS 

Google Scholar
 

Zhang, Y.-H. Non-Abelian and Abelian descendants of a vortex spin liquid: fractional quantum spin Hall effect in twisted MoTe2. Phys. Rev. B 110, 155102 (2024).

Article 
ADS 

Google Scholar
 

Kwan, Y. H. et al. When could Abelian fractional topological insulators exist in twisted MoTe2 (and other systems). Preprint at https://arxiv.org/abs/2407.02560 (2024).

Min, H. & MacDonald, A. H. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B 77, 155416 (2008).

Article 
ADS 

Google Scholar
 

Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

Article 
ADS 

Google Scholar
 

Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

Article 
ADS 

Google Scholar
 

Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

Article 
ADS 

Google Scholar
 

Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

Article 
ADS 

Google Scholar
 

Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

Article 
ADS 

Google Scholar
 

Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

Article 
ADS 

Google Scholar
 

Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

Article 

Google Scholar
 

Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

Article 
ADS 

Google Scholar
 

Lu, Z. et al. Extended quantum anomalous Hall states in graphene/hBN moiré superlattices. Nature 637, 1090–1095 (2025).

Article 
ADS 

Google Scholar
 

Xie, J. et al. Tunable fractional Chern insulators in rhombohedral graphene superlattices. Nat. Mater. 24, 1042–1048 (2025).

Article 
ADS 

Google Scholar
 

Choi, Y. et al. Electric field control of superconductivity and quantized anomalous Hall effects in rhombohedral tetralayer graphene. Nature 639, 342–347 (2025).

Article 
ADS 

Google Scholar
 

Aronson, S. H.et al. Displacement field-controlled fractional Chern insulators and charge density waves in a graphene/hBN moiré superlattice. Phys. Rev. X 15, 031026 (2024).


Google Scholar
 

Dong, Z., Patri, A. S. & Senthil, T. Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures. Phys. Rev. Lett. 133, 206502 (2024).

Article 
ADS 

Google Scholar
 

Zhou, B., Yang, H. & Zhang, Y. H. Fractional quantum anomalous Hall effects in rhombohedral multilayer graphene in the moir‚less limit and in Coulomb imprinted superlattice. Phys. Rev. Lett. 133, 206504 (2024).

Article 
ADS 

Google Scholar
 

Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. I. Interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 133, 206503 (2024).

Article 
ADS 

Google Scholar
 

Halbertal, D. et al. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. 13, 011026 (2023).

Article 

Google Scholar
 

Kwan, Y. H. et al. Moiré fractional Chern insulators III: Hartree-Fock phase diagram, magic angle regime for Chern insulator states, the role of the moir‚ potential and Goldstone gaps in rhombohedral graphene superlattices. Phys. Rev. B 112, 075109 (2025).

Article 
ADS 

Google Scholar
 

Guo, Z. & Liu, J. Correlation stabilized anomalous Hall crystal in bilayer graphene. Preprint at https://arxiv.org/abs/2409.14658 (2024).

Yu, J., Herzog-Arbeitman, J., Kwan, Y. H., Regnault, N. & Bernevig, B. A. Moiré fractional Chern insulators IV: fluctuation-driven collapse of FCIs in multi-band exact diagonalization calculations on rhombohedral graphene. Phys. Rev. B 112, 075110 (2025).

Article 
ADS 

Google Scholar
 

Han, T. et al. Signatures of chiral superconductivity in rhombohedral graphene. Nature 643, 654–661 (2025).

Article 
ADS 

Google Scholar
 

Das Sarma, S. & Xie, M. Thermal crossover from a Chern insulator to a fractional Chern insulator in pentalayer graphene. Phys. Rev. B 110, 155148 (2024).

Article 
ADS 

Google Scholar
 

Patri, A. S., Dong, Z. & Senthil, T. Extended quantum anomalous Hall effect in moiré structures: phase transitions and transport. Phys. Rev. B 110, 245115 (2024).

Article 
ADS 

Google Scholar
 

Chen, F., Luo, W.-W., Zhu, W. & Sheng, D. N. Robust non-Abelian even-denominator fractional Chern insulator in twisted bilayer MoTe2. Nat. Commun. 16, 2115 (2025).

Article 
ADS 

Google Scholar
 

Reddy, A. P., Paul, N., Abouelkomsan, A. & Fu, L. Non-Abelian fractionalization in topological minibands. Phys. Rev. Lett. 133, 166503 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Wang, C. et al. Higher Landau-level analogs and signatures of non-Abelian states in twisted bilayer MoTe2. Phys. Rev. Lett. 134, 076503 (2025).

Article 
ADS 

Google Scholar
 

Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

Article 
ADS 

Google Scholar
 

Jiang, Y. et al. 2D theoretically twistable material database. Preprint at https://arxiv.org/abs/2411.09741 (2024).

Sterdyniak, A., Repellin, C., Bernevig, B. A. & Regnault, N. Series of Abelian and non-Abelian states in C>1 fractional Chern insulators. Phys. Rev. B 87, 205137 (2013).

Article 
ADS 

Google Scholar
 

Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moiré materials. Phys. Rev. B 109, 085143 (2024).

Article 
ADS 

Google Scholar
 

Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).

Article 
MathSciNet 

Google Scholar
 

Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

Article 
ADS 

Google Scholar
 

Choi, Y. et al. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 639, 342–347 (2025).

Article 
ADS 

Google Scholar
 

Xu, F. et al. Signatures of unconventional superconductivity near reentrant and fractional quantum anomalous Hall insulators. Preprint at https://arxiv.org/abs/2504.06972 (2025).

Morales-Durán, N., Shi, J. & MacDonald, A. H. Fractionalized electrons in moiré materials. Nat. Rev. Phys. 6, 349–351 (2024).

Article 

Google Scholar
 

Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer transition metal dichalcogenides. Phys. Rev. Lett. 132, 096602 (2024).

Article 
ADS 

Google Scholar
 

Reddy, A. P., Alsallom, F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).

Article 
ADS 

Google Scholar
 

Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

Article 
ADS 

Google Scholar
 

Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).

Article 
ADS 

Google Scholar
 

Călugăru, D. et al. A new moiré platform based on M-point twisting. Nature 643, 376–381 (2025).

Article 
ADS 

Google Scholar
 

Lei, C., Mahon, P. T. & MacDonald, A. H. Moiré band theory for M-valley twisted transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2411.18828 (2024).