Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

Article 
CAS 

Google Scholar
 

Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

Article 
CAS 

Google Scholar
 

Moss, W. E. et al. Drought as an emergent driver of ecological transformation in the twenty-first century. BioScience 74, 524–538 (2024).

Article 

Google Scholar
 

Sehgal, V., Gaur, N. & Mohanty, B. P. Global flash drought monitoring using surface soil moisture. Water Resour. Res. 57, e2021WR029901 (2021).

Article 

Google Scholar
 

Yang, L., Wei, W., Chen, L., Jia, F. & Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid loess plateau, China. Hydrol. Earth Syst. Sci. 16, 3199–3217 (2012).

Article 

Google Scholar
 

Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. NPJ Clim. Atmos. Sci. 6, 205 (2023).

Article 

Google Scholar
 

Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

Article 

Google Scholar
 

Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

Article 

Google Scholar
 

Harley, R. M. & Walter, H. Ecology of tropical and subtropical vegetation. Kew Bull. 28, 165–166 (1973).

Article 

Google Scholar
 

Yang, F., Feng, Z., Wang, H., Dai, X. & Fu, X. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agric. For. Meteorol. 234–235, 106–114 (2017).

Article 

Google Scholar
 

Stocker, B. D. et al. Global patterns of water storage in the rooting zones of vegetation. Nat. Geosci. 16, 250–256 (2023).

CAS 

Google Scholar
 

Zhou, J. et al. Response of deep soil water deficit to afforestation, soil depth, and precipitation gradient. Agric. For. Meteorol. 352, 110024 (2024).

Article 

Google Scholar
 

Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

Article 
CAS 

Google Scholar
 

Li, J., Pei, J., Fang, C., Li, B. & Nie, M. Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions. Nat. Commun. 15, 617 (2024).

Article 
CAS 

Google Scholar
 

Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

Article 

Google Scholar
 

Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

Article 
CAS 

Google Scholar
 

Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).

Article 

Google Scholar
 

Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

Article 

Google Scholar
 

Liu, Y. & Yang, Y. Spatial-temporal variability pattern of multi-depth soil moisture jointly driven by climatic and human factors in China. J. Hydrol. 619, 129313 (2023).

Article 

Google Scholar
 

Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).

Article 
CAS 

Google Scholar
 

Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

Article 

Google Scholar
 

Fan, X. et al. Surging compound drought–heatwaves underrated in global soils. Proc. Natl Acad. Sci. USA 121, e2410294121 (2024).

Article 
CAS 

Google Scholar
 

Wang, Q. et al. Will large-scale forestation lead to a soil water deficit crisis in China’s drylands?. Sci. Bull. 69, 1506–1514 (2024).

Article 

Google Scholar
 

Wang, Y. et al. Quantification of human contribution to soil moisture-based terrestrial aridity. Nat. Commun. 13, 6848 (2022).

Article 
CAS 

Google Scholar
 

Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting. Part I: theory. Clim. Dynam. 21, 477–491 (2003).

Article 

Google Scholar
 

Walker, B. H. & Noy-Meir, I. in Ecology of Tropical Savannas (eds Huntley, B. J. & Walker, B. H.) 556–590 (Springer, 1982).

Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

Article 

Google Scholar
 

Wang, Y. et al. Soil moisture decline in China’s monsoon loess critical zone: more a result of land-use conversion than climate change. Proc. Natl Acad. Sci. USA 121, e2322127121 (2024).

Article 
CAS 

Google Scholar
 

Van Loon, A. F. Hydrological drought explained. WIREs Water 2, 359–392 (2015).

Article 

Google Scholar
 

Ma, F. & Yuan, X. Vegetation greening and climate warming increased the propagation risk from meteorological drought to soil drought at subseasonal timescales. Geophys. Res. Lett. 51, e2023GL107937 (2024).

Article 

Google Scholar
 

Stéfanon, M., Drobinski, P., D’Andrea, F. & De Noblet-Ducoudré, N. Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res. 117, D24103 (2012).


Google Scholar
 

Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

Article 

Google Scholar
 

Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

Article 
CAS 

Google Scholar
 

Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

Article 
CAS 

Google Scholar
 

Zohaib, M., Kim, H. & Choi, M. Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in east Asia. J. Geophys. Res. 122, 7705–7722 (2017).

Article 

Google Scholar
 

Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528 (2020).

Article 
CAS 

Google Scholar
 

Mukherjee, S., Mishra, A. K., Zscheischler, J. & Entekhabi, D. Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat. Commun. 14, 277 (2023).

Article 
CAS 

Google Scholar
 

De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites.Glob. Chang. Biol. 19, 1759–1779 (2013).

Article 

Google Scholar
 

Chen, Z.-T. et al. Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Adv. Clim. Chang. Res. 13, 251–257 (2022).

Article 
CAS 

Google Scholar
 

Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

Article 
CAS 

Google Scholar
 

Vereecken, H. et al. Soil hydrology in the earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).

Article 

Google Scholar
 

Miao, L. et al. Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. NPJ Clim. Atmos. Sci. 7, 67 (2024).

Article 

Google Scholar
 

Hosseinzadehtalaei, P., Tabari, H. & Willems, P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J. Hydrol. 590, 125249 (2020).

Article 

Google Scholar
 

Gu, L. et al. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett. 49, e2022GL097726 (2022).

Article 

Google Scholar
 

Kendon, E. J., Blenkinsop, S. & Fowler, H. J. When will we detect changes in short-duration precipitation extremes?. J. Clim. 31, 2945–2964 (2018).

Article 

Google Scholar
 

Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

Article 

Google Scholar
 

Ma, H. et al. Surface soil moisture from combined active and passive microwave observations: integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 308, 114197 (2024).

Article 

Google Scholar
 

Dorigo, W. et al. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 39, L18405 (2012).

Article 

Google Scholar
 

Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).

Article 

Google Scholar
 

Balsamo, G. et al. ERA-interim/land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).

Article 

Google Scholar
 

ERA5-Land Hourly Data from 1950 to Present (CDS, 2019).

Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

Article 

Google Scholar
 

Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

Article 

Google Scholar
 

Smith, A. B. et al. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 48, W07701 (2012).

Article 

Google Scholar
 

Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).

Article 

Google Scholar
 

Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, 2012JG002084 (2012).

Article 

Google Scholar
 

Luo, M. et al. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. Sci. Adv. 10, eadl1598 (2024).

Article 

Google Scholar
 

Du, J. et al. Machine-learning based multi-layer soil moisture forecasts—an application case study of the Montana 2017 flash drought. Water Resour. Res. 60, e2023WR036973 (2024).

Article 

Google Scholar
 

Padrón, R. S. et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481 (2020).

Article 

Google Scholar
 

Gu, X., Li, J., Chen, Y. D., Kong, D. & Liu, J. Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. 124, 1474–1495 (2019).

Article 

Google Scholar
 

Hirschi, M., Stradiotti, P., Crezee, B., Dorigo, W. & Seneviratne, S. I. Potential of long-term satellite observations and reanalysis products for characterising soil drying: trends and drought events. Hydrol. Earth Syst. Sci. 29, 397–425 (2025).

Article 

Google Scholar
 

Hsu, H., Dirmeyer, P. A. & Seo, E. Exploring the mechanisms of the soil moisture–air temperature hypersensitive coupling regime. Water Resour. Res. 60, e2023WR036490 (2024).

Article 

Google Scholar
 

Guan, Y. et al. Increase in ocean-onto-land droughts and their drivers under anthropogenic climate change. NPJ Clim. Atmos. Sci 6, 195 (2023).

Article 

Google Scholar
 

Wang, H. et al. Anthropogenic climate change has influenced global river flow seasonality. Science 383, 1009–1014 (2024).

Article 
CAS 

Google Scholar
 

Liu, R., Liu, Y. & Chen, J. GLOBMAP global leaf area index since 1981. Zenodo https://doi.org/10.5281/ZENODO.4700264 (2021).

Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1). DIAS https://doi.org/10.20783/DIAS.501 (2017).

Guan, Y. Code for paper ‘anthropogenic exacerbation of soil moisture droughts hidden below the surface’. Zenodo https://doi.org/10.5281/ZENODO.13624543 (2024).