Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).
Moss, W. E. et al. Drought as an emergent driver of ecological transformation in the twenty-first century. BioScience 74, 524–538 (2024).
Sehgal, V., Gaur, N. & Mohanty, B. P. Global flash drought monitoring using surface soil moisture. Water Resour. Res. 57, e2021WR029901 (2021).
Yang, L., Wei, W., Chen, L., Jia, F. & Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid loess plateau, China. Hydrol. Earth Syst. Sci. 16, 3199–3217 (2012).
Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. NPJ Clim. Atmos. Sci. 6, 205 (2023).
Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).
Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
Harley, R. M. & Walter, H. Ecology of tropical and subtropical vegetation. Kew Bull. 28, 165–166 (1973).
Yang, F., Feng, Z., Wang, H., Dai, X. & Fu, X. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agric. For. Meteorol. 234–235, 106–114 (2017).
Stocker, B. D. et al. Global patterns of water storage in the rooting zones of vegetation. Nat. Geosci. 16, 250–256 (2023).
Zhou, J. et al. Response of deep soil water deficit to afforestation, soil depth, and precipitation gradient. Agric. For. Meteorol. 352, 110024 (2024).
Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).
Li, J., Pei, J., Fang, C., Li, B. & Nie, M. Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions. Nat. Commun. 15, 617 (2024).
Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).
Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).
Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).
Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).
Liu, Y. & Yang, Y. Spatial-temporal variability pattern of multi-depth soil moisture jointly driven by climatic and human factors in China. J. Hydrol. 619, 129313 (2023).
Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).
Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).
Fan, X. et al. Surging compound drought–heatwaves underrated in global soils. Proc. Natl Acad. Sci. USA 121, e2410294121 (2024).
Wang, Q. et al. Will large-scale forestation lead to a soil water deficit crisis in China’s drylands?. Sci. Bull. 69, 1506–1514 (2024).
Wang, Y. et al. Quantification of human contribution to soil moisture-based terrestrial aridity. Nat. Commun. 13, 6848 (2022).
Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting. Part I: theory. Clim. Dynam. 21, 477–491 (2003).
Walker, B. H. & Noy-Meir, I. in Ecology of Tropical Savannas (eds Huntley, B. J. & Walker, B. H.) 556–590 (Springer, 1982).
Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).
Wang, Y. et al. Soil moisture decline in China’s monsoon loess critical zone: more a result of land-use conversion than climate change. Proc. Natl Acad. Sci. USA 121, e2322127121 (2024).
Van Loon, A. F. Hydrological drought explained. WIREs Water 2, 359–392 (2015).
Ma, F. & Yuan, X. Vegetation greening and climate warming increased the propagation risk from meteorological drought to soil drought at subseasonal timescales. Geophys. Res. Lett. 51, e2023GL107937 (2024).
Stéfanon, M., Drobinski, P., D’Andrea, F. & De Noblet-Ducoudré, N. Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res. 117, D24103 (2012).
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).
Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).
Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).
Zohaib, M., Kim, H. & Choi, M. Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in east Asia. J. Geophys. Res. 122, 7705–7722 (2017).
Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528 (2020).
Mukherjee, S., Mishra, A. K., Zscheischler, J. & Entekhabi, D. Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat. Commun. 14, 277 (2023).
De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites.Glob. Chang. Biol. 19, 1759–1779 (2013).
Chen, Z.-T. et al. Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Adv. Clim. Chang. Res. 13, 251–257 (2022).
Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).
Vereecken, H. et al. Soil hydrology in the earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).
Miao, L. et al. Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. NPJ Clim. Atmos. Sci. 7, 67 (2024).
Hosseinzadehtalaei, P., Tabari, H. & Willems, P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J. Hydrol. 590, 125249 (2020).
Gu, L. et al. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett. 49, e2022GL097726 (2022).
Kendon, E. J., Blenkinsop, S. & Fowler, H. J. When will we detect changes in short-duration precipitation extremes?. J. Clim. 31, 2945–2964 (2018).
Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).
Ma, H. et al. Surface soil moisture from combined active and passive microwave observations: integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 308, 114197 (2024).
Dorigo, W. et al. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 39, L18405 (2012).
Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).
Balsamo, G. et al. ERA-interim/land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).
ERA5-Land Hourly Data from 1950 to Present (CDS, 2019).
Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Smith, A. B. et al. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 48, W07701 (2012).
Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).
Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, 2012JG002084 (2012).
Luo, M. et al. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. Sci. Adv. 10, eadl1598 (2024).
Du, J. et al. Machine-learning based multi-layer soil moisture forecasts—an application case study of the Montana 2017 flash drought. Water Resour. Res. 60, e2023WR036973 (2024).
Padrón, R. S. et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481 (2020).
Gu, X., Li, J., Chen, Y. D., Kong, D. & Liu, J. Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. 124, 1474–1495 (2019).
Hirschi, M., Stradiotti, P., Crezee, B., Dorigo, W. & Seneviratne, S. I. Potential of long-term satellite observations and reanalysis products for characterising soil drying: trends and drought events. Hydrol. Earth Syst. Sci. 29, 397–425 (2025).
Hsu, H., Dirmeyer, P. A. & Seo, E. Exploring the mechanisms of the soil moisture–air temperature hypersensitive coupling regime. Water Resour. Res. 60, e2023WR036490 (2024).
Guan, Y. et al. Increase in ocean-onto-land droughts and their drivers under anthropogenic climate change. NPJ Clim. Atmos. Sci 6, 195 (2023).
Wang, H. et al. Anthropogenic climate change has influenced global river flow seasonality. Science 383, 1009–1014 (2024).
Liu, R., Liu, Y. & Chen, J. GLOBMAP global leaf area index since 1981. Zenodo https://doi.org/10.5281/ZENODO.4700264 (2021).
Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1). DIAS https://doi.org/10.20783/DIAS.501 (2017).
Guan, Y. Code for paper ‘anthropogenic exacerbation of soil moisture droughts hidden below the surface’. Zenodo https://doi.org/10.5281/ZENODO.13624543 (2024).