Endara M, Masden D, Goldstein J, Gondek S, Steinberg J, Attinger C. The role of chronic and perioperative glucose management in high-risk surgical closures: a case for tighter glycemic control. Plast Reconstr Surg. 2013;132(4):996–1004. PMID: 23783058. https://doi.org/10.1097/PRS.0b013e31829fe119.

Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307. https://doi.org/10.1371/journal.pmed.1001307. Epub 2012 Sep 11. PMID: 22984353; PMCID: PMC3439392.


Google Scholar
 

Zhang L, Guo Y, Ming H. Effects of hemodialysis, peritoneal dialysis, and renal transplantation on the quality of life of patients with end-stage renal disease. Rev Assoc Med Bras (1992). 2020;66(9):1229–1234. PMID: 33027450. https://doi.org/10.1590/1806-9282.66.9.1229.

Fockens MM, Alberts VP, Bemelman FJ, van der Pant KA, Idu MM. Wound morbidity after kidney transplant. Prog Transplant. 2015;25(1):45 – 8. PMID: 25758800. https://doi.org/10.7182/pit2015812.

Wong RBK, Minkovich M, Famure O, Li Y, Lee JY, Selzner M, Kim SJ, Ghanekar A. Surgical site complications in kidney transplant recipients: incidence, risk factors and outcomes in the modern era. Can J Surg. 2021;64(6):E669–76. https://doi.org/10.1503/cjs.015820. PMID: 34933944; PMCID: PMC8711553.


Google Scholar
 

Kuo JH, Wong MS, Perez RV, Li CS, Lin TC, Troppmann C. Renal transplant wound complications in the modern era of obesity. J Surg Res. 2012;173(2):216–23. https://doi.org/10.1016/j.jss.2011.05.030. Epub 2011 Jul 13. PMID: 21816424.


Google Scholar
 

Lau NS, Ahmadi N, Verran D. Abdominal wall complications following renal transplantation in adult recipients – factors associated with interventional management in one unit. BMC Surg. 2019;19(1):10. https://doi.org/10.1186/s12893-019-0468-x. PMID: 30665387; PMCID: PMC6341541.


Google Scholar
 

Peluso G, Incollingo P, Campanile S, Menkulazi M, Scotti A, Tammaro V, Calogero A, Dodaro C, Carlomagno N, Santangelo ML. Relation between wound complication and lymphocele after kidney transplantation: a monocentric study. Transplant Proc. 2020;52(5):1562–1565. https://doi.org/10.1016/j.transproceed.2020.02.053. Epub 2020 Apr 14. PMID: 32299707.

Alonso M, Villanego F, Vigara LA, Aguilera A, Ruíz E, García A, Montero ME, Mínguez MC, Garcia-Baquero R, García T, Mazuecos A. Surgical wound dehiscence in kidney transplantation: risk factors and impact on graft survival. Transplant Proc. 2022;54(1):27–31. https://doi.org/10.1016/j.transproceed.2021.09.066. Epub 2021 Dec 5. PMID: 34876270.

Røine E, Bjørk IT, Oyen O. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc. 2010;42(7):2542-6. PMID: 20832540. https://doi.org/10.1016/j.transproceed.2010.05.162.

Mehrabi A, Fonouni H, Wente M, et al. Wound complications following kidney and liver transplantation. Clin Transpl. 2006;20Suppl 17:97–110. https://doi.org/10.1111/j.1399-0012.2006.00608.x.


Google Scholar
 

Murdoch DM, Venter WD, Van Rie A, Feldman C. Immune reconstitution inflammatory syndrome (IRIS): review of common infectious manifestations and treatment options. AIDS ResTher. 2007;4:9. https://doi.org/10.1186/1742-6405-4-9.


Google Scholar
 

Sun HY, Singh N. Opportunistic infection-associated immune reconstitution syndrome in transplant recipients. ClinInfectDis. 2011;53(2):168–76. https://doi.org/10.1093/cid/cir276.


Google Scholar
 

Meintjes G, Lawn SD, Scano F, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23. https://doi.org/10.1016/S1473-3099(08)70184-1.


Google Scholar
 

McLin VA, Belli DC, Posfay-Barbe KM. Immune reconstitution inflammatory syndrome and solid organ transplant recipients: are children protected? Pediatr Transpl. 2010;14(1):19–22. https://doi.org/10.1111/j.1399-3046.2009.01265.x.


Google Scholar
 

Ghosh N, Kolade OO, Shontz E, et al. Nonsteroidal anti-inflammatory drugs (NSAIDs) and their effect on musculoskeletal soft-tissue healing: a scoping review. JBJS Rev. 2019;7(12):e4. https://doi.org/10.2106/JBJS.RVW.19.00055.


Google Scholar
 

Schug SA. Do NSAIDs really interfere with healing after surgery? J ClinMed. 2021;10(11):2359. https://doi.org/10.3390/jcm10112359.


Google Scholar
 

Hertel J. The role of nonsteroidal anti-inflammatory drugs in the treatment of acute soft tissue injuries. J AthlTrain. 1997;32(4):350–8.


Google Scholar
 

Zhao-Fleming H, Hand A, Zhang K, et al. Effect of non-steroidal anti-inflammatory drugs on post-surgical complications against the backdrop of the opioid crisis. BurnsTrauma. 2018;6:25. https://doi.org/10.1186/s41038-018-0128-x.


Google Scholar
 

Baron C, Forconi C, Lebranchu Y. Revisiting the effects of CMV on long-term transplant outcome. CurrOpinOrganTransplant. 2010;15(4):492–8. https://doi.org/10.1097/MOT.0b013e32833bd3b5.


Google Scholar
 

Roman A, Manito N, Campistol JM, et al. The impact of the prevention strategies on the indirect effects of CMV infection in solid organ transplant recipients. TransplantRev (Orlando). 2014;28(2):84–91. https://doi.org/10.1016/j.trre.2014.01.001.


Google Scholar
 

Dasari N, Jiang A, Skochdopole A, et al. Updates in diabetic wound healing, inflammation, and scarring. SeminPlastSurg. 2021;35(3):153–8. https://doi.org/10.1055/s-0041-1731460.


Google Scholar
 

Endara M, Masden D, Goldstein J, et al. The role of chronic and perioperative glucose management in high-risk surgical closures: a case for tighter glycemic control. PlastReconstrSurg. 2013;132(4):996–1004. https://doi.org/10.1097/PRS.0b013e31829fe119.


Google Scholar
 

Martin ET, Kaye KS, Knott C, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. InfectControlHospEpidemiol. 2016;37(1):88–99. https://doi.org/10.1017/ice.2015.249.


Google Scholar
Â