Kim HK. Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease. J Bone Joint Surg Am. 2012;94(7):659–69.


Google Scholar
 

Jonsater S. Coxa plana; a histo-pathologic and arthrografic study. Acta Orthop Scand Suppl. 1953;12:5–98.


Google Scholar
 

Catterall A, Pringle J, Byers PD. A review of the morphology of Perthes’ disease. J Bone Joint Surg Br. 1982;64(3):269–75.


Google Scholar
 

Alves do Monte F, Sung Park M, Gokani V, et al. Development of a novel minimally invasive technique to washout necrotic bone marrow content from epiphyseal bone: A preliminary cadaveric bone study. Orthop Traumatol Surg Res. 2020;106(4):709–15.


Google Scholar
 

Kim HKW, Park MS, Alves do Monte F, Gokani V, Aruwajoye OO, Ren Y. Minimally invasive necrotic bone washing improves bone healing after femoral head ischemic osteonecrosis: an experimental investigation in immature pigs. J Bone Joint Surg Am. 2021;103(13):1193–202.


Google Scholar
 

Dolman CL, Bell HM. The pathology of Legg-Calvé-Perthes disease. A case report. J Bone Joint Surg Am. 1973;55(1):184–8.


Google Scholar
 

Kim HK, Burgess J, Thoveson A, Gudmundsson P, Dempsey M, Jo CH. Assessment of femoral head revascularization in Legg-Calvé-Perthes disease using serial perfusion MRI. J Bone Joint Surg Am. 2016;98(22):1897–904.


Google Scholar
 

Kamiya N, Yamaguchi R, Aruwajoye O, Adapala NS, Kim HK. Development of a mouse model of ischemic osteonecrosis. Clin Orthop Relat Res. 2015;473(4):1486–98.


Google Scholar
 

Atsumi T, Yamano K, Muraki M, Yoshihara S, Kajihara T. The blood supply of the lateral epiphyseal arteries in Perthes’ disease. J Bone Joint Surg Br. 2000;82(3):392–8.


Google Scholar
 

Atsumi T, Yoshihara S, Hiranuma Y. Revascularization of the artery of the ligamentum teres in Perthes disease. Clin Orthop Relat Res. 2001;386:210–7.


Google Scholar
 

Morris WZ, Valencia AA, McGuire MF, Kim HKW. The role of the artery of ligamentum teres in revascularization in legg-calve-perthes disease. J Pediatr Orthop. 2022;42(4):175–8.


Google Scholar
 

Lamer S, Dorgeret S, Khairouni A, et al. Femoral head vascularisation in Legg-Calvé-Perthes disease: comparison of dynamic gadolinium-enhanced subtraction MRI with bone scintigraphy. Pediatr Radiol. 2002;32(8):580–5. https://doi.org/10.1007/s00247-002-0732-5.


Google Scholar
 

Kim HK, Bian H, Aya-ay J, Garces A, Morgan EF, Gilbert SR. Hypoxia and HIF-1alpha expression in the epiphyseal cartilage following ischemic injury to the immature femoral head. Bone. 2009;45(2):280–8.


Google Scholar
 

Ma C, Andre G, Edwards D, Kim HKW. A rat model of ischemic osteonecrosis for investigating local therapeutics using biomaterials. Acta Biomater. 2021;132:260–71.


Google Scholar
 

Deng Z, Kim HKW, Hernandez PA, Ren Y. Fat phagocytosis promotes anti-inflammatory responses of macrophages in a mouse model of osteonecrosis. Cells. 2024. https://doi.org/10.3390/cells13141227.


Google Scholar
 

Deng Z, Ren Y, Park MS, Kim HKW. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone. 2022;154:116215. https://doi.org/10.1016/j.bone.2021.116215.


Google Scholar
 

Silva MT, do Vale A, dos Santos NM. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis. 2008;13(4):463–82.


Google Scholar
 

Silva MT. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 2010;584(22):4491–9. https://doi.org/10.1016/j.febslet.2010.10.046.


Google Scholar
 

Cole HA, Yuasa M, Hawley G, Cates JM, Nyman JS, Schoenecker JG. Differential development of the distal and proximal femoral epiphysis and physis in mice. Bone. 2013;52(1):337–46.


Google Scholar
 

Kim HK, Su PH. Development of flattening and apparent fragmentation following ischemic necrosis of the capital femoral epiphysis in a piglet model. J Bone Joint Surg Am. 2002;84(8):1329–34. https://doi.org/10.2106/00004623-200208000-00007.


Google Scholar
 

Kothapalli R, Aya-ay JP, Bian H, Garces A, Kim HK. Ischaemic injury to femoral head induces apoptotic and oncotic cell death. Pathology. 2007;39(2):241–6. https://doi.org/10.1080/00313020701230765.


Google Scholar
 

Phipps MC, Huang Y, Yamaguchi R, Kamiya N, Adapala NS, Tang L, et al. In vivo monitoring of activated macrophages and neutrophils in response to ischemic osteonecrosis in a mouse model. J Orthop Res. 2016;34(2):307–13. https://doi.org/10.1002/jor.22952.


Google Scholar
 

Kuroyanagi G, Adapala NS, Yamaguchi R, et al. Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Bone. 2018;116:221–31.


Google Scholar
 

Kamiya N, Kuroyanagi G, Aruwajoye O, Kim HKW. IL6 receptor blockade preserves articular cartilage and increases bone volume following ischemic osteonecrosis in immature mice. Osteoarthritis Cartilage. 2019;27(2):326–35.


Google Scholar
 

Kuroyanagi G, Kamiya N, Yamaguchi R, Kim HKW. Interleukin-6 receptor blockade improves bone healing following ischemic osteonecrosis in adolescent mice. Osteoarthritis Cartilage Open. 2023;5(4):100386. https://doi.org/10.1016/j.ocarto.2023.100386.


Google Scholar
 

Kochi T, Imai Y, Takeda A, Watanabe Y, Mori S, Tachi M, et al. Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PLoS ONE. 2013;8(12):e84047. https://doi.org/10.1371/journal.pone.0084047.


Google Scholar
 

Weerasinghe P, Buja LM. Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol. 2012;93(3):302–8. https://doi.org/10.1016/j.yexmp.2012.09.018.


Google Scholar
 

Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.


Google Scholar
 

De Schutter E, Ramon J, Pfeuty B, De Tender C, Stremersch S, Raemdonck K, et al. Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cell Mol Life Sci. 2021;79(1):19. https://doi.org/10.1007/s00018-021-04078-0.


Google Scholar
 

Dondelinger Y, Priem D, Huyghe J, Delanghe T, Vandenabeele P, Bertrand MJM. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis. 2023;14(11):755.


Google Scholar
 

Kayagaki N, Kornfeld OS, Lee BL, et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 2021;591(7848):131–6.


Google Scholar
 

Chekeni FB, Elliott MR, Sandilos JK, et al. Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature. 2010;467(7317):863–7.


Google Scholar
 

Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.


Google Scholar
 

Schuermans S, Kestens C, Marques PE. Systemic mechanisms of necrotic cell debris clearance. Cell Death Dis. 2024;15(8):557.


Google Scholar
 

Schuermans S, Quanico J, Kestens C, et al. Degradation rather than disassembly of necrotic debris is essential to enhance recovery after acute liver injury. Cell Mol Life Sci. 2025;82(1):190.


Google Scholar
 

Vandendriessche S, Mattos MS, Bialek EL, Schuermans S, Proost P, Marques PE. Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury. Front Immunol. 2024;15:1512470.


Google Scholar
 

Mattos MS, Vandendriessche S, Schuermans S, Feyaerts L, Hövelmeyer N, Waisman A, et al. Natural antibodies are required for clearance of necrotic cells and recovery from acute liver injury. JHEP Rep. 2024;6(4):101013. https://doi.org/10.1016/j.jhepr.2024.101013.


Google Scholar
 

Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to defend: neutrophil death pathways and their implications in immunity. Adv Sci. 2024;11(8):e2306457. https://doi.org/10.1002/advs.202306457.


Google Scholar
 

Kang L, Yu H, Yang X, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11(1):2488.


Google Scholar
 

Wang J, Li L, Xu J, et al. Neutrophil extracellular traps induce endothelial damage and exacerbate vasospasm in traumatic brain injury. Theranostics. 2025;15(17):9221–39.


Google Scholar
 

Loh W, Vermeren S. Anti-inflammatory neutrophil functions in the resolution of inflammation and tissue repair. Cells. 2022. https://doi.org/10.3390/cells11244076.


Google Scholar
 

Sachet M, Liang YY, Oehler R. The immune response to secondary necrotic cells. Apoptosis. 2017;22(10):1189–204.


Google Scholar
 

Fadok VA, Bratton DL, Guthrie L, Henson PM. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol. 2001;166(11):6847–54. https://doi.org/10.4049/jimmunol.166.11.6847.


Google Scholar
 

Miles K, Clarke DJ, Lu W, et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol. 2009;183(3):2122–32.


Google Scholar
 

Brook M, Tomlinson GH, Miles K, et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci U S A. 2016;113(16):4350–5.


Google Scholar
 

Vandivier RW, Fadok VA, Hoffmann PR, et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest. 2002;109(5):661–70.


Google Scholar
 

Roth S, Agthe M, Eickhoff S, et al. Secondary necrotic neutrophils release interleukin-16C and macrophage migration inhibitory factor from stores in the cytosol. Cell Death Discov. 2015;1:15056.


Google Scholar
 

Roth S, Solbach W, Laskay T. IL-16 and MIF: messengers beyond neutrophil cell death. Cell Death Dis. 2016;7(1):e2049. https://doi.org/10.1038/cddis.2015.388.


Google Scholar
 

Kargapolova Y, Geißen S, Zheng R, Baldus S, Winkels H, Adam M. The enzymatic and non-enzymatic function of myeloperoxidase (MPO) in inflammatory communication. Antioxidants. 2021. https://doi.org/10.3390/antiox10040562.


Google Scholar
 

Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a promising therapeutic target after myocardial infarction. Antioxidants. 2024. https://doi.org/10.3390/antiox13070788.


Google Scholar
 

Better J, Estiri M, Wetstein M, et al. Cell type-specific efferocytosis determines functional plasticity of alveolar macrophages. Sci Immunol. 2025;10(107):eadl3852.


Google Scholar
 

Lefkowitz DL, Gelderman MP, Fuhrmann SR, Graham S, Starnes JD III, Lefkowitz SS, et al. Neutrophilic myeloperoxidase-macrophage interactions perpetuate chronic inflammation associated with experimental arthritis. Clin Immunol. 1999;91(2):145–55. https://doi.org/10.1006/clim.1999.4696.


Google Scholar
 

Lefkowitz DL, Lefkowitz SS. Macrophage-neutrophil interaction: a paradigm for chronic inflammation revisited. Immunol Cell Biol. 2001;79(5):502–6.


Google Scholar
 

Grattendick K, Stuart R, Roberts E, et al. Alveolar macrophage activation by myeloperoxidase: a model for exacerbation of lung inflammation. Am J Respir Cell Mol Biol. 2002;26(6):716–22.


Google Scholar
 

Kamiya N, Yamaguchi R, Adapala NS, Chen E, Neal D, Jack O, et al. Legg-Calvé-Perthes disease produces chronic hip synovitis and elevation of interleukin-6 in the synovial fluid. J Bone Miner Res. 2015;30(6):1009–13. https://doi.org/10.1002/jbmr.2435.


Google Scholar
 

Kamiya N, Kim HK. Elevation of proinflammatory cytokine HMGB1 in the synovial fluid of patients with Legg-Calvé-Perthes disease and correlation with IL-6. JBMR Plus. 2021;5(2):e10429. https://doi.org/10.1002/jbm4.10429.


Google Scholar
 

Adapala NS, Yamaguchi R, Phipps M, Aruwajoye O, Kim HKW. Necrotic bone stimulates proinflammatory responses in macrophages through the activation of Toll-like receptor 4. Am J Pathol. 2016;186(11):2987–99. https://doi.org/10.1016/j.ajpath.2016.06.024.


Google Scholar
 

Yu R, Ma C, Li G, Xu J, Feng D, Lan X. Inhibition of toll-like receptor 4 signaling pathway accelerates the repair of avascular necrosis of femoral epiphysis through regulating macrophage polarization in Perthes disease. Tissue Eng Regen Med. 2023;20(3):489–501.


Google Scholar