Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

MathSciNet 

Google Scholar
 

Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

MathSciNet 

Google Scholar
 

Freedman, M. H., Larsen, M. & Wang, Z. A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002).

MathSciNet 

Google Scholar
 

Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

MathSciNet 

Google Scholar
 

Kim, B. J. et al. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).


Google Scholar
 

Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).


Google Scholar
 

Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264 (2019).


Google Scholar
 

Liu, H., Chaloupka, J. & Khaliullin, G. Kitaev spin liquid in 3d transition metal compounds. Phys. Rev. Lett. 125, 047201 (2020).


Google Scholar
 

Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d7 cobalt compounds: possible realization of the Kitaev model. Phys. Rev. B 97, 014407 (2018).


Google Scholar
 

Sano, R., Kato, Y. & Motome, Y. Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators. Phys. Rev. B 97, 014408 (2018).


Google Scholar
 

Songvilay, M. et al. Kitaev interactions in the Co honeycomb antiferromagnets Na3Co2SbO6 and Na2Co2TeO6. Phys. Rev. B 102, 224429 (2020).


Google Scholar
 

Yao, W., Iida, K., Kamazawa, K. & Li, Y. Excitations in the ordered and paramagnetic states of honeycomb magnet Na2Co2TeO6. Phys. Rev. Lett. 129, 147202 (2022).


Google Scholar
 

Kim, C. et al. Antiferromagnetic Kitaev interaction in Jeff = 1/2 cobalt honeycomb materials Na3Co2SbO6 and Na2Co2TeO6. J. Phys.: Condens. Matter 34, 045802 (2022).


Google Scholar
 

van Veenendaal, M. et al. Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate Na3Co2SbO6 probed with x-ray dichroism. Phys. Rev. B 107, 214443 (2023).


Google Scholar
 

Gu, Y. et al. In-plane multi-q magnetic ground state of Na3Co2SbO6. Phys. Rev. B 109, L060410 (2024).


Google Scholar
 

Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).


Google Scholar
 

Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733 (2016).


Google Scholar
 

Wolter, A. U. B. et al. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96, 041405 (2017).


Google Scholar
 

Viciu, L. et al. Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6. J. Solid State Chem. 180, 1060–1067 (2007).


Google Scholar
 

Yan, J.-Q. et al. Magnetic order in single crystals of Na3Co2SbO6 with a honeycomb arrangement of 3d7 Co2+ ions. Phys. Rev. Mat. 3, 074405 (2019).


Google Scholar
 

Vavilova, E. et al. Magnetic phase diagram and possible Kitaev-like behavior of the honeycomb-lattice antimonate Na3Co2SbO6. Phys. Rev. B 107, 054411 (2023).


Google Scholar
 

Hu, Z. et al. Field-induced phase transitions and quantum criticality in the honeycomb antiferromagnet Na3Co2SbO6. Phys. Rev. B 109, 054411 (2024).


Google Scholar
 

Li, X. et al. Giant magnetic in-plane anisotropy and competing instabilities in Na3Co2SbO6. Phys. Rev. X 12, 041024 (2022).


Google Scholar
 

Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).


Google Scholar
 

Takayama, T. et al. Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O6. Phys. Rev. Res. 4, 043079 (2022).


Google Scholar
 

Hermann, V. et al. Pressure-induced formation of rhodium zigzag chains in the honeycomb rhodate Li2RhO3. Phys. Rev. B 100, 064105 (2019).


Google Scholar
 

Xu, Y. et al. Pressure-induced structural evolution with a turnover point in the honeycomb iridate Na2IrO3. J. Phys. Chem. C 127, 20177–20182 (2023).


Google Scholar
 

Shen, B. et al. Interplay of magnetism and dimerization in the pressurized Kitaev material β-Li2IrO3. Phys. Rev. B 104, 134426 (2021).


Google Scholar
 

Veiga, L. S. I. et al. Pressure-induced structural dimerization in the hyperhoneycomb iridate β-Li2IrO3 at low temperatures. Phys. Rev. B 100, 064104 (2019).


Google Scholar
 

Fabbris, G. et al. Complex pressure-temperature structural phase diagram of the honeycomb iridate Cu2IrO3. Phys. Rev. B 104, 014102 (2021).


Google Scholar
 

van Veenendaal, M. & Haskel, D. Interpretation of Ir L-edge isotropic x-ray absorption spectra across the pressure-induced dimerization transition in hyperhoneycomb β-Li2IrO3. Phys. Rev. B 105, 214420 (2022).


Google Scholar
 

Jiang, S., White, S. R. & Chernyshev, A. L. Quantum phases in the honeycomb-lattice J1-J3 ferro-antiferromagnetic model. Phys. Rev. B 108, L180406 (2023).


Google Scholar
 

Fouet, J. B., Sindzingre, P. & Lhuillier, C. An investigation of the quantum J1-J2-J3 model on the honeycomb lattice. Eur. Phys. J. B 20, 241–254 (2001).


Google Scholar
 

Birch, F. Elasticity and constitution of the earth’s interior. J. Geophys. Res. 57, 227 (1952).


Google Scholar
 

Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. A universal equation of state for solids. J. Phys. C Solid State Phys. 19, L467 (1986).


Google Scholar
 

Vinet, P., Smith, J. R., Ferrante, J. & Rose, J. H. Temperature effects on the universal equation of state of solids. Phys. Rev. B 35, 1945–1953 (1987).


Google Scholar
 

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst. A32, 751–767 (1976).


Google Scholar
 

Liu, Z. et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3. J. Am. Chem. Soc. 142, 5731–5741 (2020).


Google Scholar
 

Guo, Q., Mao, H.-K., Hu, J., Shu, J. & Hemley, R. J. The phase transitions of CoO under static pressure to 104 GPa. J. Phys. Condens. Matter 14, 11369–11374 (2002).


Google Scholar
 

Rueff, J.-P., Mattila, A., Badro, J., Vankó, G. & Shukla, A. Electronic properties of transition-metal oxides under high pressure revealed by x-ray emission spectroscopy. J. Phys. Condens. Matter 17, S717–S726 (2005).


Google Scholar
 

Robinson, K., Gibbs, G. V. & Ribbe, P. H. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567–570 (1971).


Google Scholar
 

Tsutsumi, K. The x-ray non-diagram lines K\(\beta {\prime}\) of some compounds of the iron group. J. Phys. Soc. Japan 14, 12 (1959).


Google Scholar
 

Tsutsumi, K. & Nakamori, H. X-ray K emission spectra of chromium in various chromium compounds. J. Phys. Soc. Japan 25, 5 (1968).


Google Scholar
 

Sikora, M. et al. Strong K-edge magnetic circular dichroism observed in photon-in-photon-out spectroscopy. Phys. Rev. Lett. 105, 037202 (2010).


Google Scholar
 

Li, N. et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure. Phys. Rev. B 99, 245125 (2019).


Google Scholar
 

Yoo, C. S. et al. First-order isostructural mott transition in highly compressed MnO. Phys. Rev. Lett. 94, 115502 (2005).


Google Scholar
 

Mao, Z. et al. Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron mössbauer and x-ray emission spectroscopy. Am. Min. 99, 415–423 (2014).


Google Scholar
 

Kunes, J., Lukoyanov, A. V., Anisimov, V. I., Scalettar, R. T. & Pickett, W. E. Collapse of magnetic moment drives the mott transition in MnO. Nat. Mater. 7, 198–202 (2008).


Google Scholar
 

Ji, C. et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 573, 558 (2019).


Google Scholar
 

Haberl, B., Guthrie, M. & Boehler, R. Advancing neutron diffraction for accurate structural measurement of light elements at megabar pressures. Sci. Rep. 13, 4741 (2023).


Google Scholar
 

Baldini, M., Struzhkin, V. V., Goncharov, A. F., Postorino, P. & Mao, W. L. Persistence of Jahn-Teller distortion up to the insulator to metal transition in LaMnO3. Phys. Rev. Lett. 106, 066402 (2011).


Google Scholar
 

Kim, G.-H. et al. Suppression of antiferromagnetic order by strain-enhanced frustration in honeycomb cobaltate. Sci. Adv. 10, eadn8694 (2024).


Google Scholar
 

Takayama, T. et al. Pressure-induced collapse of the spin-orbital mott state in the hyperhoneycomb iridate β-Li2IrO3. Phys. Rev. B 99, 125127 (2019).


Google Scholar
 

Clancy, J. P. et al. Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate. npj Quant. Mater. 3, 35 (2018).


Google Scholar
 

Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).


Google Scholar
 

Goodenough, J. B. Magnetism and the Chemical Bond. (Interscience-Wiley, New York, 1963).


Google Scholar
 

Zaliznyak, I. A., Dender, D. C., Broholm, C. & Reich, D. H. Tuning the spin hamiltonian of Ni(C2H8N2)2NO2ClO4 by external pressure: a neutron-scattering study. Phys. Rev. B 57, 5200 (1998).


Google Scholar
 

Pajerowski, D. M., Podlesnyak, A. P., Herbrych, J. & Manson, J. High-pressure inelastic neutron scattering study of the anisotropic S=1 spin chain [Ni(HF2)(3-Clpyradine)4]BF4. Phys. Rev. B 105, 134420 (2022).


Google Scholar
 

Li, X. et al. Magnetic order, disorder, and excitations under pressure in the Mott insulator Sr2IrO4. Phys. Rev. B 104, L201111 (2021).


Google Scholar
 

Haase, J., Goh, S. K., Meissner, T., Alireza, P. L. & Rybicki, D. High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments. Rev. Sci. Instrum. 80, 073905 (2009).


Google Scholar
 

Shen, G. et al. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source. High Press. Res. 28, 145–162 (2008).


Google Scholar
 

Dunstan, D. J. Theory of the gasket in diamond anvil high pressure cells. Rev. Sci. Instrum. 60, 3789–3795 (1989).


Google Scholar
 

Rivers, M. et al. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 28, 273–292 (2008).


Google Scholar
 

Barnett, J. D., Block, S. & Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond anvil cell. Rev. Sci. Intrum. 44, 1–9 (1973).


Google Scholar
 

Chijioke, A. D., Nellis, W. J., Soldatov, A. & Silvera, I. F. The ruby pressure standard to 150 Gpa. J. Appl. Phys. 98, 114905 (2005).

Hanfland, M. & Syassen, K. A Raman study of diamond anvils under stress. J. Appl. Phys. 57, 2752–2756 (1985).


Google Scholar
 

Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 Gpa. J. Phys. Conf. Ser. 215, 012195 (2010).


Google Scholar
 

Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional x-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).


Google Scholar
 

Petr^íček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

Gonzalez-Platas, J., Alvaro, M., Nestolac, F. & Angel, R. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 49, 1377–1382 (2016).


Google Scholar
 

Haskel, D., Tseng, Y. C., Lang, J. C. & Sinogeikin, S. Instrument for x-ray magnetic circular dichroism measurements at high pressures. Rev. Sci. Instrum. 78, 083904 (2007).


Google Scholar
 

Lin, J.-F., Shu, J., Mao, H.-K., Hemley, R. J. & Shen, G. Amorphous boron gasket in diamond anvil cell research. Rev. Sci. Instrum. 74, 4732–4736 (2003).


Google Scholar
 

Lin, J.-F. et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nat. Geosci. 1, 688–691 (2008).


Google Scholar
 

Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).


Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).


Google Scholar
 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).


Google Scholar
 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).


Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).


Google Scholar
 

van Veenendaal, M. The Theory of Inelastic Scattering and Absorption of X-rays. (Cambridge University Press, Cambridge, 2015).


Google Scholar
 

Wang, X., de Groot, F. M. F. & Cramer, S. P. Spin-polarized x-ray emission of 3d transition-metal ions: A comparison via Kα and Kβ detection. Phys. Rev. B 56, 4553–4564 (1997).


Google Scholar
 

Harrison, W. A. Elementary Electronic Structure. (World Scientific, Singapore, 1999).


Google Scholar
 

Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).


Google Scholar