Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

Article 
ADS 

Google Scholar
 

Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kan, S. et al. Risk of intact forest landscape loss goes beyond global agricultural supply chains. One Earth 6, 55–65 (2023).

Article 
ADS 

Google Scholar
 

Bai, Y. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

White, R., Murray, S., & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems (World Resources Institute, Washington D.C, 2022).

UNCCD. Global Land Outlook Thematic Report on Rangelands and Pastoralism (United Nations Convention to Combat Desertification, Bonn, 2024).

Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

Article 
ADS 

Google Scholar
 

Convention on Wetlands. Scaling Up Wetland Conservation and Restoration to Deliver the Kunming-Montreal Global Biodiversity Framework: Guidance on Including Wetlands in National Biodiversity Strategy and Action Plans (NBSAPs) to Boost Biodiversity and Halt Wetland Loss and Degradation (Ramsar Technical Report No. 12. Gland, Secretariat of the Convention on Wetlands, Switzerland, 2024).

Stewart, A. J. et al. Revealing the hidden carbon in forested wetland soils. Nat. Commun. 15, 726 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Parente, L. et al. Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal Machine Learning. Sci. Data 11, 1303 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lehner, B. et al. Mapping the world’s inland surface waters: an upgrade to the Global Lakes and Wetlands Database (GLWD v2). Earth Syst. Sci. Data 17, 2277–2329 (2025).

Article 
ADS 

Google Scholar
 

Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 1–3 (2017).

Article 

Google Scholar
 

Fleiss, S. et al. Implications of zero-deforestation palm oil for tropical grassy and dry forest biodiversity. Nat. Ecol. Evol. 7, 250–263 (2023).

Article 
PubMed 

Google Scholar
 

Scholtz, R. & Twidwell, D. The last continuous grasslands on Earth: identification and conservation importance. Conserv. Sci. Pract. 4, e626 (2022).

Article 

Google Scholar
 

Bonanomi, J. et al. Protecting forests at the expense of native grasslands: land-use policy encourages open-habitat loss in the Brazilian cerrado biome. Perspect. Ecol. Conserv. 17, 26–31 (2019).


Google Scholar
 

Samberg, L., Pirri, M. D. & Beatty, C. SBTN’s No Conversion Target builds on the Accountability Framework. https://accountability-framework.org/news-events/news/sbtns-no-conversion-target-builds-on-the-accountability-framework/ (2023).

Thomson, E. & Franklin, H. A Decade of Deforestation Data (Global Canopy, Oxford, UK, 2024).

Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Aska, B., Franks, D. M., Stringer, M. & Sonter, L. J. Biodiversity conservation threatened by global mining wastes. Nat. Sustain. 7, 23–30 (2024).

Marquardt, S. G. et al. Consumption-based biodiversity footprints – Do different indicators yield different results?. Ecol. Indic. 103, 461–470 (2019).

Article 

Google Scholar
 

Semenchuk, P. et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 13, 615 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, J. et al. Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).

Article 
ADS 

Google Scholar
 

Potapov, P. et al. The global 2000-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).

Zhang, X. et al. GLC_FCS30D: the first global 30m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 16, 1353–1381 (2024).

Article 
ADS 

Google Scholar
 

UNEP-WCMC. User Manual for the World Database on Protected Areas and World Database on Other Effective Area-Based Conservation Measures: 1.6 (UNEP-WCMC, Cambridge, UK, 2019).

IUCN. The IUCN Red List of Threatened Species. Version 6. https://www.iucnredlist.org (2022).

BirdLife International & Handbook of the Birds of the World. Bird Species Distribution Maps of the World. Version 2022.2. http://datazone.birdlife.org/species/requestdis (2022).

BirdLife International. The World Database of Key Biodiversity Areas. Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Re:wild, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund. www.keybiodiversityareas.org (2022).

Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

Article 
ADS 

Google Scholar
 

Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia?. Environ. Res. Lett. 14, 024007 (2019).

Article 
ADS 

Google Scholar
 

Ordway, E. M., Naylor, R. L., Nkongho, R. N. & Lambin, E. F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 10, 114 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

FAOSTAT. Production, Food Balances, Trade and Land Use Statistics. https://www.fao.org/faostat/en/#data (2025).

FAO. Global Forest Resources Assessment – FRA 2025 – Terms and Definitions.Forest Resources Assessment Working Paper 194 (Food and Agriculture Organization of the United Nations, Rome, 2023).

Lahsen, M., Bustamante, M. M. C. & Dalla-Nora, E. L. Undervaluing and overexploiting the Brazilian cerrado at our peril. Environ. Sci. Policy Sustain. Dev. 58, 4–15 (2016).

Article 

Google Scholar
 

Stolton, S., Shadie, P. & Dudley, N. IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types, Best Practice Protected Area Guidelines Series No. 21 (IUCN, Gland, Switzerland, 2013).

Nuttall, M. et al. Protected area downgrading, downsizing, and degazettement in Cambodia: enabling conditions and opportunities for intervention. Conserv. Sci. Pract. 5, e12912 (2023).

Article 

Google Scholar
 

Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

Article 
ADS 

Google Scholar
 

Gilroy, J. J. Sustainable palm oil puts grasslands at risk. Nat. Ecol. Evol. 7, 178–179 (2023).

Article 
PubMed 

Google Scholar
 

Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

Article 
ADS 

Google Scholar
 

Gollnow, F., Cammelli, F., Carlson, K. M. & Garrett, R. D. Gaps in adoption and implementation limit the current and potential effectiveness of zero-deforestation supply chain policies for soy. Environ. Res. Lett. 17, 114003 (2022).

Article 
ADS 

Google Scholar
 

Levy, S. A., Garik, A. V. N. & Garrett, R. D. The challenge of commodity-centric governance in sacrifice frontiers: evidence from the Brazilian Cerrado’s soy sector. Geoforum 150, 103972 (2024).

Article 

Google Scholar
 

Chaves, M. E. D. et al. Reverse the Cerrado’s neglect. Nat. Sustain. 6, 1028–1029 (2023).

Article 

Google Scholar
 

Federal Ministry of Environment of Nigeria. National Land Degradation Neutrality Targets (Abuja, Nigeria, 2017).

U. S. Department of Agriculture. USDA Accepts Nearly 2.7 Million Acres in Grassland CRP Signup, Successfully Closing the Gap and bringing CRP Near to Acreage Cap. https://fsa.usda.gov/news-room/news-releases/2023/grassland-crp-accepted-acres-in-2023-signup (2023).

U.S. Environmental Protection Agency. Protection of Wetlands (Executive Order 11990, 2015).

Hou, L. et al. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 12, 4683 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, Y.-C. & Jiang, X. Wetland protection law of the people’s republic of China: new efforts in wetland conservation. Int. J. Mar. Coast. Law 38, 141–160 (2023).

Article 

Google Scholar
 

Ministerio de Medio Ambiente e Cambio Climático de Brasil. Plano de Ação Para Prevenção e Controle Do Desmatamento e Das Queimadas No Bioma Cerrado (PPCerrado): 4a Fase (2023 a 2027) (Brasília, MMA, 2023).

Statistics Canada, Government of Canada. Land use, Census of Agriculture Historical Data. https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210015301 (2022).

Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 103, 14637–14641 (2006).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Schielein, J. & Börner, J. Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy 76, 81–94 (2018).

Article 

Google Scholar
 

Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

Article 

Google Scholar
 

Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

Article 
ADS 

Google Scholar
 

The European Parliament. Regulation (EU) 2023/1115 of the European Parliament and of the Council of 31 May 2023. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1115 (2023).

Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Decuyper, M. et al. Continuous monitoring of forest change dynamics with satellite time series. Remote Sens. Environ. 269, 112829 (2022).

Article 

Google Scholar
 

Stevens, N., Bond, W., Feurdean, A. & Lehmann, C. E. R. Grassy ecosystems in the Anthropocene. Annu. Rev. Environ. Resour. 47, 261–289 (2022).

Article 

Google Scholar
 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

Article 

Google Scholar