Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

Article 

Google Scholar
 

Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. USA 114, 528–533 (2017).

Article 

Google Scholar
 

Prost, S. et al. Genomic analyses show extremely perilous conservation status of African and Asiatic cheetahs (Acinonyx jubatus). Mol. Ecol. 31, 4208–4223 (2022).

Article 

Google Scholar
 

Farhadinia, M. S. et al. The critically endangered Asiatic cheetah Acinonyx jubatus venaticus in Iran: a review of recent distribution, and conservation status. Biodivers. Conserv. 26, 1027–1046 (2017).

Article 

Google Scholar
 

Gasperetti, J., Harrison, D. L., and Buttiker, W. The Carnivora of Arabia. (pp. 397−461). In: Buttiker W., Krupp F. (eds). Fauna of Saudi Arabia, vol. 7, Kingdom of Saudi Arabia, Meteorology and Environmental Protection Administration, Jedda, 461 pp (1985).

Harrison, D. L. and Bates, P. J. J. The Mammals of Arabia. Second Edition (1991).

Harrison, D. L. The mammal fauna of Oman with special reference to conservation and the Oman Flora and Fauna Surveys. J. Oman Stud. 6, 329–339 (1983).


Google Scholar
 

Boshoff, A., Landman, M. & Kerley, G. Filling the gaps on the maps: historical distribution patterns of some larger mammals in part of southern Africa. Trans. R. Soc. South Afr. 71, 23–87 (2015).

Article 

Google Scholar
 

Belbachir, F., Pettorelli, N., Wacher, T., Belbachir-Bazi, A. & Durant, S. M. Monitoringrarity: the critically endangered Saharan cheetah as a flagship species for a threatened ecosystem. PLoS One 10, e0115136 (2015).

Article 

Google Scholar
 

Allsen, T. T. The Royal Hunt in Eurasian History. (University of Pennsylvania Press, 2006).

Alatawi, A. S. Conservation action in Saudi Arabia: challenges and opportunities. Saudi J. Biol. Sci. 29, 3466–3472 (2022).

Article 

Google Scholar
 

Marker, L., Boast, L. K., and Schmidt-Kuentzel, A. Cheetahs: Biology and Conservation: Biodiversity of the World: Conservation from Genes to Landscapes. Academic Press (2018).

Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

Article 

Google Scholar
 

Soulé, M. & Noss, R. Complementary goals for continental conservation. Wild Earth 8, 39–64 (1998).


Google Scholar
 

Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: the first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).

Article 

Google Scholar
 

Estes, J. A., Tinker, M. T. & Bodkin, J. L. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago. Conserv. Biol. 24, 852–860 (2010).

Article 

Google Scholar
 

Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).

Article 

Google Scholar
 

Wolf, C. & Ripple, W. J. Rewilding the world’s large carnivores. R. Soc. open Sci. 5, 172–235 (2018).


Google Scholar
 

Barichievy, C. et al. Conservation in Saudi Arabia; moving from strategy to practice. Saudi J. Biol. Sci. 25, 290–292 (2018).

Article 

Google Scholar
 

Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. 104, 14616–14621 (2007).

Article 

Google Scholar
 

Plug, I. and Badenhorst, S. The Distribution of Macro mammals in South Africa over the past 30000 years. Transvaal Museum, Pretoria (2001).

Geigl, E. M. & Grange, T. Of cats and men: ancient DNA reveals how the cat conquered the ancient world. Paleogenomics: genome-scale analysis of ancient DNA, 307–324 (2019).

Shin, D. H., & Bianucci, R. (Eds.). The Handbook of Mummy Studies: New Frontiers in Scientific and Cultural Perspectives. Springer. https://doi.org/10.1007/978-981-15-3354-9 (2021).

Sivrev, D. & Georgieva, A. The role of physical and chemical factors in natural mummification. Acta Morphol. Anthropol. 9, 170–177 (2004).


Google Scholar
 

Hodgins, G., Brook, G. A. and Marais, E. Bomb-spike dating of a mummified baboon in Ludwig Cave, Namibia. International Journal of Speleology, 36, 31-38. Bologna (Italy). ISSN 0392-6672 (2007).

Lowry, D. C. & Lowry, J. W. Discovery of a Thylacine (Tasmanian Tiger) carcase in a cave near Eucla, Western Australia. Helictite 5, 25–29 (1967).


Google Scholar
 

Lowry, J. W. & Merrilees, D. 1969. Age of the dessicated carcass of a thylacine (Marsupialia, Dasyuroidea) from Thylacine Hole, Nullarbor Region, Western Australia. Helictite 7, 15–16 (1969).


Google Scholar
 

Hodnett, J. P., White, R., Carpenter, M. A. R. Y., Mead, J. and Santucci, V. “Miracinonyx trumani (Carnivora: Felidae) from the rancholabrean of the Grand Canyon, Arizona and its implications for the ecology of the ‘American cheetah’.” Late Cenozoic Vertebrate Palaeontology: Tribute to Arthur H. Harris. Morgan G. S., Baskin, J. A., Czaplewski, NJ, Lucas, SG, McDonald, HG, Mead, J. I., White, RS Jr., Lichtig, A. J. eds., (New Mexico Museum of Natural History and Science Bulletin 88). 157-186 (2022).

Barnett, R. et al. Evolution of the extinct Sabretooths and the American cheetah-like cat. Curr. Biol. 15, R589–R590 (2005).

Article 

Google Scholar
 

Alt, K. W. et al. Climbing into the past—first Himalayan mummies discovered in Nepal. J. Archaeol. Sci. 30, 1529–1535 (2003).

Article 

Google Scholar
 

Davila, R. A., Rodbell, D. T. & Bush, M. B. Pleistocene megafaunal extinction in the grasslands of Junín-Peru. J. Biogeogr. 50, 755–766 (2023).

Article 

Google Scholar
 

Orlando, L. et al. Ancient DNA analysis. Nat. Rev. methods Prim. 1, 14 (2021).

Article 

Google Scholar
 

Metz, G. ‘Raven, M. J. & Taconis W. K. Egyptian Mummies: Radiological Atlas of the Collections in the National Museum of Antiquities in Leiden.–Turnhout, Brepols’ (Papers on Archaeology of the Leiden Museum of Antiquities 1). PalArch’s Journal of Archaeology of Egypt/Egyptology, 3, pp. 01–02 (2006).

Willemink, M. J. & Noël, P. B. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur. Radiol. 29, 2185–2195 (2019).

Article 

Google Scholar
 

Shanti, M. A., Pint, J., Juaid, A. J. and Amoudi, S. A. Preliminary Survey for Caves in the Habakah Region of the Kingdom of Saudi Arabia. (Saudi Geological Survey, 2003).

Youssef, A. M. et al. Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes and impacts. Hydrogeol. J. 24, 625 (2016).

Article 

Google Scholar
 

Lundelius, E. L. Jr Cave site contributions to vertebrate history. Alcheringa Australas. J. Palaeontol. 30, 195–210 (2006).

Article 

Google Scholar
 

Pokines, J. T., Nowell, A., Bisson, M. S., Cordova, C. E. & Ames, C. J. The functioning of a natural faunal trap in a semi-arid environment: preliminary investigations of WZM-1, a limestone sinkhole site near Wadi Zarqa Ma’in, Hashemite Kingdom of Jordan. J. Taphon. 9, 89–115 (2011).


Google Scholar
 

Lovelace, D. M. et al. An age-depth model and revised stratigraphy of vertebrate-bearing units in Natural Trap Cave, Wyoming. Quat. Int. 647, 4–21 (2023).

Article 

Google Scholar
 

C., John, B. A. Frase & C. D. Frailey Late Pleistocene pronghorn, Antilocapra americana, from natural trap cave, Wyoming. (1988).

Martin, L. D. and Gilbert, B. M. Excavations at Natural Trap Cave. Transactions of the Nebraska Academy of Sciences, 6 (1978).

Wang, X. M. & Martin, L. D. Late Pleistocene, paleoecology and large mammal taphonomy, natural Trap Cave, Wyoming. Natl. Geograph. Res. Explor. 9, 422–435 (1993).


Google Scholar
 

Quarta, G., Calcagnile, L., D’Elia, M., Rizzo, A., Ingravallo, E. AMS radiocarbon dating of “Grotta Cappuccini” in Southern Italy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223–224:705–708 (2004).

Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

Article 

Google Scholar
 

Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

Article 

Google Scholar
 

Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

Article 

Google Scholar
 

Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA frag- ments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

Article 

Google Scholar
 

Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

Article 

Google Scholar
 

Gamba, C., et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. (2016).

Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 105, 539–543 (1998).

Article 

Google Scholar
 

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

Article 

Google Scholar
 

Winter, S. et al. A chromosome-scale high-contiguity genome assembly of the cheetah (Acinonyx jubatus). J. Heredity 114, 271–278 (2023).

Article 

Google Scholar
 

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics 25, 1754–1760 (2009).

Article 

Google Scholar
 

Li, H. et al. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Article 

Google Scholar
 

Burger, P. A. et al. Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease. Gene 338, 111–119 (2004).

Article 

Google Scholar
 

Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinforma. 15, 356 (2014).

Article 

Google Scholar
 

Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PloS one 7, e34131 (2012).

Article 

Google Scholar
 

Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

Article 

Google Scholar
 

Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

Article 

Google Scholar
 

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. “Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.”. Mol. Ecol. Resour. 15, 1179–1191 (2015).

Article 

Google Scholar
 

Fumagalli, M., Vieira, F. G., Linderoth, T. & Nielsen, R. NgsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics 30, 1486–1487 (2014).

Article 

Google Scholar
 

Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Mol. Biol. Evolution 32, 2798–2800 (2015).

Article 

Google Scholar
 

Stamatakis, A. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

Article 

Google Scholar