Li, S., Xu, L. D. & Zhao, S. The internet of things: a survey. Inf. Syst. Front. 17, 243–259 (2015).


Google Scholar
 

Das, S. & Mao, E. The global energy footprint of information and communication technology electronics in connected internet-of-things devices. Sustain. Energy Grids Netw. 24, 100408 (2020).


Google Scholar
 

O’Leary, D. E. Artificial intelligence and big data. IEEE Intell. Syst. 28, 96–99 (2013).


Google Scholar
 

Nahavandi, D., Alizadehsani, R., Khosravi, A. & Acharya, U. R. Application of artificial intelligence in wearable devices: opportunities and challenges. Comput. Methods Prog. Biomed. 213, 106541 (2022).


Google Scholar
 

Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


Google Scholar
 

Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 22501 (2022).


Google Scholar
 

Imran, M. A., Zoha, A., Zhang, L. & Abbasi, Q. H. Grand challenges in IoT and sensor networks. Front. Commun. Netw. 1, 619452 (2020).


Google Scholar
 

Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).


Google Scholar
 

Akarvardar, K. & Wong, H.-S. P. Technology prospects for data-intensive computing. Proc. IEEE 111, 92–112 (2023).


Google Scholar
 

Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023).


Google Scholar
 

Chen, C., Zhou, Y., Tong, L., Pang, Y. & Xu, J. Emerging 2D ferroelectric devices for In-sensor and In-memory computing. Adv. Mater. 2400332. https://doi.org/10.1002/adma.202400332 (2024).

Shi, Y., Duong, N. T. & Ang, K.-W. Emerging 2D materials hardware for in-sensor computing. Nanoscale Horiz. 10, 205–229 (2025).


Google Scholar
 

Hassan, J. Z. et al. 2D material-based sensing devices: an update. J. Mater. Chem. A 11, 6016–6063 (2023).


Google Scholar
 

Chen, M. et al. Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing. Nat. Nanotechnol. 19, 962–969 (2024).


Google Scholar
 

Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

ADS 

Google Scholar
 

Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

ADS 

Google Scholar
 

Jayachandran, D., Sakib, N. U. & Das, S. 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1, 300–316 (2024).


Google Scholar
 

An, J. et al. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater. 32, 2110119 (2022).


Google Scholar
 

Li, Z. et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15, 7275 (2024).


Google Scholar
 

Zhang, B., Lu, P., Tabrizian, R., Feng, P. X.-L. & Wu, Y. 2D Magnetic heterostructures: spintronics and quantum future. npj Spintron. 2, 6 (2024).


Google Scholar
 

Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

ADS 

Google Scholar
 

Shin, Y. et al. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 9, 2105423 (2022).


Google Scholar
 

Huang, J. et al. A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024).


Google Scholar
 

Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi, A., Das, S. & Das, S. A biomimetic neural encoder for spiking neural network. Nat. Commun. 12, 2143 (2021).

ADS 

Google Scholar
 

Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).

Faisal, S. N. & Iacopi, F. Thin-film electrodes based on two-dimensional nanomaterials for neural interfaces. ACS Appl. Nano Mater. 5, 10137–10150 (2022).


Google Scholar
 

Yang, Z. et al. Seizure detection using dynamic memristor-based reservoir computing and leaky integrate-and-fire neuron for post-processing. APL Mach. Learn. 1, 046123 (2023).

Farronato, M. et al. Seizure detection via reservoir computing in MoS2-based charge trap memory devices. Sci. Adv. 11, eadr3241 (2025).

Tyagi, D. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12, 3535–3559 (2020).


Google Scholar
 

Kumar Gupta, V., Choudhary, K. & Kumar, S. Two-dimensional materials-based plasmonic sensors for health monitoring systems—a review. IEEE Sens. J. 23, 11324–11335 (2023).

ADS 

Google Scholar
 

Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).


Google Scholar
 

Meng, J. et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022).

ADS 

Google Scholar
 

Das, B. et al. Artificial visual systems fabricated with ferroelectric van der waals heterostructure for in-memory computing applications. ACS Nano 17, 21297–21306 (2023).


Google Scholar
 

Wang, P. et al. Integrated In-memory sensor and computing of artificial vision based on full-vdW optoelectronic ferroelectric field-effect transistor. Adv. Sci. 11, 2305679 (2024).


Google Scholar
 

Ci, W. et al. All-In-one optoelectronic neuristor based on full-vdW two-terminal ferroelectric p–n heterojunction. Adv. Funct. Mater. 34, 2305822 (2024).


Google Scholar
 

Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron 5, 761–773 (2022).


Google Scholar
 

Zha, J. et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv. Mater. 35, 2211598 (2023).


Google Scholar
 

Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).

ADS 

Google Scholar
 

Zeng, J. et al. Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34, 2313010 (2024).


Google Scholar
 

Li, X. et al. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2 Se3. Adv. Funct. Mater. 34, 2306486 (2024).


Google Scholar
 

Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

ADS 

Google Scholar
 

Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron 5, 386–393 (2022).


Google Scholar
 

Leblanc, C., Song, S. & Jariwala, D. 2D ferroelectrics and ferroelectrics with 2D: materials and device prospects. Curr. Opin. Solid State Mater. Sci. 32, 101178 (2024).


Google Scholar
 

Wang, H. et al. The evolution of 2D vdW ferroelectric materials: theoretical prediction, experiment confirmation, applications. Appl. Phys. Rev. 11, 21330 (2024).


Google Scholar
 

Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

ADS 

Google Scholar
 

Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In 2 Se 3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).


Google Scholar
 

Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

ADS 

Google Scholar
 

Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).

ADS 

Google Scholar
 

Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

ADS 

Google Scholar
 

Du, J. et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy 89, 106439 (2021).


Google Scholar
 

Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).

ADS 

Google Scholar
 

Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

ADS 

Google Scholar
 

Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

ADS 

Google Scholar
 

Dutta, D., Mukherjee, S., Uzhansky, M. & Koren, E. Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. npj 2D Mater. Appl 5, 81 (2021).


Google Scholar
 

Li, X., Li, S., Tang, B., Liao, J. & Chen, Q. A Vis-SWIR photonic synapse with low power consumption based on WSe2 /In2 Se3 ferroelectric heterostructure. Adv. Electron. Mater. 8, 2200343 (2022).


Google Scholar
 

Zhou, J. et al. Multimodal 2D ferroelectric transistor with integrated perception-and-computing-in-memory functions for reservoir computing. Nano Lett. acs.nanolett.4c05071. https://doi.org/10.1021/acs.nanolett.4c05071 (2024).

Duong, N. T. et al. Coupled ferroelectric-photonic memory in a retinomorphic hardware for In-sensor computing. Adv. Sci. 11, 2303447 (2024).


Google Scholar
 

Wang, X. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021).

ADS 

Google Scholar
 

Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).


Google Scholar
 

Jin, X., Zhang, Y.-Y. & Du, S. Recent progress in the theoretical design of two-dimensional ferroelectric materials. Fundam. Res. 3, 322–331 (2023).


Google Scholar
 

Yu, J. et al. Photoinduced deterministic polarization switching in CuInP2 S6 for multifunctional optoelectronic logic gates. Nano Lett. acs.nanolett.4c05777. https://doi.org/10.1021/acs.nanolett.4c05777 (2025).

Zhang, J. et al. Ultrafast polarization switching via laser-activated ionic migration in ferroelectric CuInP2S6. Phys. Rev. B 111, 104111 (2025).

Guan, Z., Ni, S. & Hu, S. Tunable electronic and optical properties of monolayer and multilayer janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C. 122, 6209–6216 (2018).


Google Scholar
 

Yin, W.-J. et al. Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021).


Google Scholar
 

Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

ADS 

Google Scholar
 

Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).

ADS 

Google Scholar
 

Hsain, H. A. et al. Many routes to ferroelectric HfO2: a review of current deposition methods. J. Vac. Sci. Technol. A 40 (2022).

Xiang, H. et al. Enhancing memory window efficiency of ferroelectric transistor for neuromorphic computing via two-dimensional materials integration. Adv. Funct. Mater. 33, 2304657 (2023).


Google Scholar
 

Chien, Y. et al. A MoS2 hafnium oxide based ferroelectric encoder for temporal-efficient spiking neural network. Adv. Mater. 35, 2204949 (2023).


Google Scholar
 

Wu, X., Gao, S., Xiao, L. & Wang, J. WSe2 negative capacitance field-effect transistor for biosensing applications. ACS Appl. Mater. Interfaces 16, 42597–42607 (2024).


Google Scholar
 

Ning, H. et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023).

ADS 

Google Scholar
 

Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

ADS 

Google Scholar
 

Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

ADS 

Google Scholar
 

McCreary, K. M. et al. Stacking-dependent optical properties in bilayer WSe 2. Nanoscale 14, 147–156 (2022).


Google Scholar
 

Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2023).

ADS 

Google Scholar
 

Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).


Google Scholar
 

Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).

ADS 

Google Scholar
 

Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at https://doi.org/10.48550/arXiv.2306.03922 (2023).

Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

ADS 

Google Scholar
 

Zhai, Y. et al. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Appl. Phys. Rev. 10, 11408 (2023).


Google Scholar
 

Memristors and Memristive Systems. https://doi.org/10.1007/978-1-4614-9068-5 (Springer New York, 2014).

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

ADS 

Google Scholar
 

Shan, X. et al. Emerging multimodal memristors for biorealistic neuromorphic applications. Mater. Futures 3, 12701 (2024).


Google Scholar
 

Thakkar, P., Gosai, J., Gogoi, H. J. & Solanki, A. From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. J. Mater. Chem. C. 12, 1583–1608 (2024).


Google Scholar
 

Zhao, T. et al. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3 C2 T x MXenes floating gate. Adv. Funct. Mater. 31, 2106000 (2021).


Google Scholar
 

Wang, Y. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).


Google Scholar
 

Ahmed, T. et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019).


Google Scholar
 

He, H. et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14, 1800079 (2018).


Google Scholar
 

Cheng, Y. et al. Vertical 0D-perovskite/2D-MoS2 van der waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 16, 2005217 (2020).


Google Scholar
 

Wang, W. et al. Artificial optoelectronic synapses based on TiN x O2– x /MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2101201 (2021).


Google Scholar
 

Sahu, M. C., Sahoo, S., Mallik, S. K., Jena, A. K. & Sahoo, S. Multifunctional 2D MoS2 optoelectronic artificial synapse with integrated arithmetic and reconfigurable logic operations for In-memory neuromorphic computing applications. Adv. Mater. Technol. 8, 2201125 (2023).


Google Scholar
 

Dodda, A., Trainor, N., Redwing, Joan, M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).

ADS 

Google Scholar
 

Li, G. et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13, 1729 (2022).

ADS 

Google Scholar
 

Zha, J. et al. A 2D heterostructure-based multifunctional floating gate memory device for multimodal reservoir computing. Adv. Mater. 36, 2308502 (2024).


Google Scholar
 

Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

ADS 

Google Scholar
 

Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

ADS 

Google Scholar
 

Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).


Google Scholar
 

Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

ADS 

Google Scholar
 

Song, M.-K. et al. Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 17, 11994–12039 (2023).


Google Scholar
 

Jang, H. et al. Flexible neuromorphic electronics for wearable near-sensor and In-sensor computing systems. Adv. Mater. 37, 2416073 (2025).


Google Scholar
 

Van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).


Google Scholar
 

Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

ADS 

Google Scholar
 

Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

ADS 

Google Scholar
 

Hirata, T. & Ohuchi, F. S. Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun. 117, 361–364 (2001).

ADS 

Google Scholar
 

Samnakay, R. et al. Zone-folded phonons and the commensurate−incommensurate charge-density-wave transition in 1T‑TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).

Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

ADS 

Google Scholar
 

Sayers, C. J. et al. Correlation between crystal purity and the charge density wave in 1 T – VSe 2. Phys. Rev. Mater. 4, 25002 (2020).


Google Scholar
 

Hossain, M. et al. Recent advances in two-dimensional materials with charge density waves: synthesis, characterization and applications. Crystals 7, 298 (2017).


Google Scholar
 

Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).

ADS 

Google Scholar
 

Khitun, A., Liu, G. & Balandin, A. A. Two-dimensional oscillatory neural network based on room-temperature charge-density-wave devices. IEEE Trans. Nanotechnol. 16, 860–867 (2017).

ADS 

Google Scholar
 

Mihailovic, D. et al. Ultrafast non-thermal and thermal switching in charge configuration memory devices based on 1T-TaS2. Appl. Phys. Lett. 119, 13106 (2021).


Google Scholar
 

Liu, H. et al. A tantalum disulfide charge-density-wave stochastic artificial neuron for emulating neural statistical properties. Nano Lett. 21, 3465–3472 (2021).

ADS 

Google Scholar
 

Li, W. & Naik, G. V. Light-induced reorganization of charge density wave stacking in 1T-TaS2. Appl. Phys. Lett. 118, 253104 (2021).

ADS 

Google Scholar
 

Behera, S. K., Ahalawat, M. & Ramamurthy, P. C. Reconstructed electronic structure in 2D vdW 1T-Ta$S_2$ for quantum sensing and information science. Preprint at https://doi.org/10.48550/arXiv.2404.14932 (2024).

Huang, W. C.-W. et al. Ultrafast optical switching to a heterochiral charge-density wave state. Preprint at https://doi.org/10.48550/arXiv.2405.20872 (2024).

Tilak, N. et al. Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure. Nat. Commun. 15, 8056 (2024).


Google Scholar
 

Brown, J. O., Guo, T., Pasqualetti, F. & Balandin, A. A. Charge-density-wave oscillator networks for solving combinatorial optimization problems. Preprint at https://doi.org/10.48550/arXiv.2503.06355 (2025).

Lv, B. Q. et al. Unconventional hysteretic transition in a charge density wave. Phys. Rev. Lett. 128, 36401 (2022).

ADS 

Google Scholar
 

Wu, D. et al. Layered semiconductor EuTe 4 with charge density wave order in square tellurium sheets. Phys. Rev. Mater. 3, 24002 (2019).


Google Scholar
 

Zhang, Q. Q. et al. Thermal hysteretic behavior and negative magnetoresistance in the charge density wave material EuTe 4. Phys. Rev. B 107, 115141 (2023).

ADS 

Google Scholar
 

Rathore, R. et al. Evolution of static charge density wave order, amplitude mode dynamics, and suppression of kohn anomalies at the hysteretic transition in EuTe 4. Phys. Rev. B 107, 24101 (2023).

ADS 

Google Scholar
 

Liu, Q. et al. Room-temperature non-volatile optical manipulation of polar order in a charge density wave. Nat. Commun. 15, 8937 (2024).


Google Scholar
 

Verma, A. et al. Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured mott insulator. Nat. Phys. 20, 807–814 (2024).


Google Scholar
 

Venturini, R. et al. Electrically driven non-volatile resistance switching between charge density wave states at room temperature. Preprint at https://doi.org/10.48550/arXiv.2412.13094 (2024).

Duan, S. et al. Identification of metastable lattice distortion free charge density wave at photoinduced interface via TRARPES. npj Quantum Mater. 10, 16 (2025).


Google Scholar
 

de la Torre, A. et al. Dynamic phase transition into a mixed-CDW state in 1$T$-TaS$_2$ via a thermal quench. Preprint at https://doi.org/10.48550/arXiv.2407.07953 (2025).

Boix-Constant, C. et al. Out-of-plane transport of 1T-TaS2 /graphene-based van der waals heterostructures. ACS Nano 15, 11898–11907 (2021).


Google Scholar
 

Taheri, M. et al. Electrical gating of the charge-density-wave phases in two-dimensional h -BN/1T-TaS2 devices. ACS Nano 16, 18968–18977 (2022).


Google Scholar
 

Shi, J. et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 30, 1804616 (2018).


Google Scholar
 

Yanase, T. et al. Unidirectional growth of epitaxial tantalum disulfide triangle crystals grown on sapphire by chemical vapour deposition with a separate-flow system. CrystEngComm 26, 341–348 (2024).


Google Scholar
 

Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

ADS 

Google Scholar
 

Du, R. et al. Two-dimensional multiferroic material of metallic p-doped SnSe. Nat. Commun. 13, 6130 (2022).

ADS 

Google Scholar
 

Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotech. 13, 289–293 (2018).

ADS 

Google Scholar
 

Zhang, G. et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 13, 5067 (2022).

ADS 

Google Scholar
 

Shao, D.-F. & Tsymbal, E. Y. Antiferromagnetic tunnel junctions for spintronics. npj Spintron. 2, 13 (2024).


Google Scholar
 

Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

ADS 

Google Scholar
 

Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

ADS 

Google Scholar
 

Wang, X. et al. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun. 14, 840 (2023).

ADS 

Google Scholar
 

Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

ADS 

Google Scholar
 

Sattar, S., Islam, M. F. & Canali, C. M. Monolayer Mn X. and Janus, X Mn Y (X, Y= S, Se, Te): a family of two-dimensional antiferromagnetic semiconductors. Phys. Rev. B 106, 085410 (2022).

Moinuddin, M. G., Srinivasan, S. & Sharma, S. K. Probing ferrimagnetic semiconductor with enhanced negative magnetoresistance: 2D chromium sulfide. Adv. Electron. Mater. 7, 2001116 (2021).


Google Scholar
 

Girovsky, J. et al. Long-range ferrimagnetic order in a two-dimensional supramolecular kondo lattice. Nat. Commun. 8, 15388 (2017).

ADS 

Google Scholar
 

Li, X. & Yang, J. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 10, 2439–2444 (2019).


Google Scholar
 

Fender, S. S., Gonzalez, O. & Bediako, D. K. Altermagnetism: a chemical perspective. J. Am. Chem. Soc. 147, 2257–2274 (2025).


Google Scholar
 

Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00779-1 (2025).


Google Scholar
 

Reichlova, H. et al. Observation of a spontaneous anomalous hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).

ADS 

Google Scholar
 

Regmi, R.B., Bhandari, H. & Thapa, B. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Nat Commun 16, 4399 (2025).


Google Scholar
 

Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4 NbS2. Inorg. Chem. 62, 18179–18188 (2023).


Google Scholar
 

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

ADS 

Google Scholar
 

Bera, S. & Mandal, S. S. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets. Phys. Rev. Res. 1, 033109 (2019).


Google Scholar
 

Tey, M. S. N., Chen, X., Soumyanarayanan, A. & Ho, P. Chiral spin textures for next-generation memory and unconventional computing. ACS Appl. Electron. Mater. 4, 5088–5097 (2022).


Google Scholar
 

Crépieux, A. & Lacroix, C. Dzyaloshinsky–moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998).

ADS 

Google Scholar
 

Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

ADS 

Google Scholar
 

Behera, A. K., Chowdhury, S. & Das, S. R. Magnetic skyrmions in atomic thin CrI3 monolayer. Appl. Phys. Lett. 114, 232402 (2019).

ADS 

Google Scholar
 

Zhang, Y. et al. Generation of magnetic skyrmions in two-dimensional magnets via interfacial proximity. Phys. Rev. B 107, 24402 (2023).

ADS 

Google Scholar
 

Hallal, A. et al. Rashba-type dzyaloshinskii–moriya interaction, perpendicular magnetic anisotropy, and skyrmion states at 2D materials/Co interfaces. Nano Lett. 21, 7138–7144 (2021).

ADS 

Google Scholar
 

Sun, W. et al. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv. Funct. Mater. 31, 2104452 (2021).


Google Scholar
 

Cui, Q. et al. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by P 4̅ m 2 crystal symmetry. Nano Lett. 22, 2334–2341 (2022).

ADS 

Google Scholar
 

Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron-antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).

ADS 

Google Scholar
 

Xia, J., Zhang, X., Liu, X., Zhou, Y. & Ezawa, M. Qubits based on merons in magnetic nanodisks. Commun. Mater. 3, 88 (2022).


Google Scholar
 

Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).


Google Scholar
 

Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl 4, 17 (2020).


Google Scholar
 

Ikeda, S. et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices 54, 991–1002 (2007).

ADS 

Google Scholar
 

Kumar, M. et al. Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 31, 19487–19510 (2020).


Google Scholar
 

Tabrizchi, S. et al. Magnetic-based integrated sensing and In/near-sensor processing:a comprehensive survey and future outlook. Preprint at https://doi.org/10.21203/rs.3.rs-4909455/v1 (2024).

Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

ADS 

Google Scholar
 

Kaverzin, A. A., Ghiasi, T. S., Dismukes, A. H., Roy, X. & van Wees, B. J. Towards fully two-dimensional spintronic devices. 2D Mater. 9, 045003 (2022).


Google Scholar
 

Piquemal-Banci, M. et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J. Phys. D Appl. Phys. 50, 203002 (2017).

ADS 

Google Scholar
 

Wang, Z. et al. Tunneling spin valves based on Fe3 GeTe2 /hBN/Fe3 GeTe2 van der waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

ADS 

Google Scholar
 

Camsari, K. Y., Sutton, B. M. & Datta, S. p-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 11305 (2019).


Google Scholar
 

Daniel, J. et al. Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors. Nat. Commun. 15, 4098 (2024).

ADS 

Google Scholar
 

Löhndorf, M. et al. Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002).

ADS 

Google Scholar
 

Ota, S., Ando, A. & Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018).


Google Scholar
 

Liang, S. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat. Electron. 6, 199–205 (2023).


Google Scholar
 

Behera, B., Sutar, B. C. & Pradhan, N. R. Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Mater. 4, 847–863 (2021).


Google Scholar
 

Guo, Y. et al. 2D multiferroicity with ferroelectric switching induced spin-constrained photoelectricity. ACS Nano 16, 11174–11181 (2022).


Google Scholar
 

Krempaský, J. et al. Efficient magnetic switching in a correlated spin glass. Nat. Commun. 14, 6127 (2023).

ADS 

Google Scholar
 

Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

ADS 

Google Scholar
 

Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

ADS 

Google Scholar
 

Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

ADS 

Google Scholar
 

Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).


Google Scholar
 

Koraltan, S. et al. Skyrmionic device for three dimensional magnetic field sensing enabled by spin-orbit torques. Preprint at https://doi.org/10.48550/arXiv.2403.16725 (2024).

Yokouchi, T. et al. Pattern recognition with neuromorphic computing using magnetic field–induced dynamics of skyrmions. Sci. Adv. 8, eabq5652 (2022).

ADS 

Google Scholar
 

Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature 546, 265–269 (2017).

ADS 

Google Scholar
 

Ansari, M. S., Othman, M. H. D., Ansari, M. O., Ansari, S. & Abdullah, H. Progress in Fe3O4-centered spintronic systems: development, architecture, and features. Appl. Mater. Today 25, 101181 (2021).


Google Scholar
 

Plummer, D. Z. et al. 2D Spintronics for neuromorphic computing with scalability and energy efficiency. J. Low Power Electron. Appl. 15, 16 (2025).


Google Scholar
 

Wang, H. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der waals Fe3 GeTe2 tailored by a topological insulator. ACS Nano 14, 10045–10053 (2020).


Google Scholar
 

Dankert, A., Venkata Kamalakar, M., Wajid, A., Patel, R. S. & Dash, S. P. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res 8, 1357–1364 (2015).


Google Scholar
 

Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).


Google Scholar
 

Kumari, S., Pradhan, D. K., Pradhan, N. R. & Rack, P. D. Recent developments on 2D magnetic materials: challenges and opportunities. Emergent Mater. 4, 827–846 (2021).


Google Scholar
 

Hao, Q. et al. 2D magnetic heterostructures and emergent spintronic devices. Adv. Elect. Mater. 8, 2200164 (2022).


Google Scholar
 

Leitao, D. C. et al. Enhanced performance and functionality in spintronic sensors. Npj Spintron. 2, 54 (2024).


Google Scholar
 

Zhao, Z., Lin, Y. & Avsar, A. Novel spintronic effects in two-dimensional van der Waals heterostructures. npj 2D Mater. Appl. 9, 30 (2025).


Google Scholar
 

Cui, Z. et al. Magnetic-ferroelectric synergic control of multilevel conducting states in van der waals multiferroic tunnel junctions towards in-memory computing. Nanoscale 16, 1331–1344 (2024).


Google Scholar
 

Piquemal-Banci, M. et al. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108, 102404 (2016).

ADS 

Google Scholar
 

Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

ADS 

Google Scholar
 

Schram, T. et al. WS2 transistors on 300 mm wafers with BEOL compatibility. In Proc. 47th European Solid-state Device Research Conference (essderc) 212–215. https://doi.org/10.1109/ESSDERC.2017.8066629 (IEEE, Leuven, Belgium, 2017).

Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

ADS 

Google Scholar
 

Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).

ADS 

Google Scholar
 

Schranghamer, T. F., Sharma, M., Singh, R. & Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).


Google Scholar
 

Nakatani, M. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 7, 119–130 (2024).


Google Scholar
 

Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

ADS 

Google Scholar
 

Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

ADS 

Google Scholar
 

Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).

ADS 

Google Scholar
 

Rodgers, M. M., Pai, V. M. & Conroy, R. S. Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 15, 3119–3126 (2015).

ADS 

Google Scholar
 

Wang, T.-Y. et al. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021).


Google Scholar
 

Feng, G. et al. Flexible vertical photogating transistor network with an ultrashort channel for In-sensor visual nociceptor. Adv. Funct. Mater. 31, 2104327 (2021).


Google Scholar
 

Ji, R. et al. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv. Electron. Mater. 8, 2101402 (2022).


Google Scholar
 

Haldane, F. D. M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 40502 (2017).

MathSciNet 

Google Scholar
 

Kou, X., Fan, Y., Lang, M., Upadhyaya, P. & Wang, K. L. Magnetic topological insulators and quantum anomalous hall effect. Solid State Commun. 215–216, 34–53 (2015).

ADS 

Google Scholar
 

Liu, Y. et al. Cryogenic in-memory computing using magnetic topological insulators. Nat. Mater. https://doi.org/10.1038/s41563-024-02088-4 (2025).

Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).

ADS 

Google Scholar
 

Weber, B. et al. 2024 roadmap on 2D topological insulators. J. Phys. Mater. 7, 22501 (2024).


Google Scholar
 

Cucchi, I. et al. Microfocus laser–angle-resolved photoemission on encapsulated mono-, Bi-, and few-layer 1T′-WTe2. Nano Lett. 19, 554–560 (2019).

ADS 

Google Scholar
 

Xu, N., Xu, Y. & Zhu, J. Topological insulators for thermoelectrics. npj Quantum Mater. 2, 51 (2017).

ADS 

Google Scholar
 

Wen, W., Dang, C. & Xie, L. Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 *. Chin. Phys. B 28, 58504 (2019).

ADS 

Google Scholar
 

Freitas, P. P., Ferreira, R. & Cardoso, S. Spintronic sensors. Proc. IEEE 104, 1894–1918 (2016).


Google Scholar