Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

ADS 
MathSciNet 

Google Scholar
 

Bricard, A., Caussin, J. B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

ADS 

Google Scholar
 

Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, 3246 (2018).

ADS 

Google Scholar
 

Duclos, G. et al. Topological structure and dynamics of three-dimensional active nematics. Science 367, 1120–1124 (2020).

ADS 

Google Scholar
 

Alert, R., Casademunt, J. & Joanny, J. F. Active turbulence. Annu. Rev. Condens. Matter Phys. 13, 143–170 (2022).

ADS 

Google Scholar
 

Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

ADS 

Google Scholar
 

Suzuki, R., Weber, C. A., Frey, E. & Bausch, A. R. Polar pattern formation in driven filament systems requires non-binary particle collisions. Nat. Phys. 11, 839–843 (2015).


Google Scholar
 

Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

ADS 

Google Scholar
 

Najma, B., Wei, W. S., Baskaran, A., Foster, P. J. & Duclos, G. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Proc. Natl Acad. Sci. USA 121, e2300174121 (2024).


Google Scholar
 

Maitra, A., Lenz, M. & Voituriez, R. Chiral active hexatics: giant number fluctuations, waves, and destruction of order. Phys. Rev. Lett. 125, 238005 (2020).

ADS 

Google Scholar
 

Aubret, A., Martinet, Q. & Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 12, 6398 (2021).

ADS 

Google Scholar
 

Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).


Google Scholar
 

Giomi, L., Toner, J. & Sarkar, N. Long-ranged order and flow alignment in sheared p-atic liquid crystals. Phys. Rev. Lett. 129, 067801 (2022).

ADS 
MathSciNet 

Google Scholar
 

Armengol-Collado, J. M., Carenza, L. N., Eckert, J., Krommydas, D. & Giomi, L. Epithelia are multiscale active liquid crystals. Nat. Phys. 19, 1773–1779 (2023).


Google Scholar
 

Mijalkov, M., McDaniel, A., Wehr, J. & Volpe, G. Engineering sensorial delay to control phototaxis and emergent collective behaviors. Phys. Rev. X 6, 011008 (2016).


Google Scholar
 

Lavergne, F. A., Wendehenne, H., Bäuerle, T. & Bechinger, C. Group formation and cohesion of active particles with visual perception–dependent motility. Science 364, 70–74 (2019).

ADS 

Google Scholar
 

Alston, H., Parry, A. O., Voituriez, R. & Bertrand, T. Intermittent attractive interactions lead to microphase separation in nonmotile active matter. Phys. Rev. E 106, 034603 (2022).

ADS 
MathSciNet 

Google Scholar
 

van Kesteren, S., Alvarez, L., Arrese-Igor, S., Alegria, A. & Isa, L. Self-propelling colloids with finite state dynamics. Proc. Natl Acad. Sci. USA 120, e2213481120 (2023).


Google Scholar
 

Ketzetzi, S. et al. Self-reconfiguring colloidal active matter. Preprint at https://arxiv.org/abs/2501.00672 (2024).

Parsek, M. R. & Greenberg, E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).


Google Scholar
 

Guttenplan, S. B. & Kearns, D. B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37, 849–871 (2013).


Google Scholar
 

Grobas, I., Polin, M. & Asally, M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 10, e62632 (2021).


Google Scholar
 

Worlitzer, V. M. et al. Biophysical aspects underlying the swarm to biofilm transition. Sci. Adv. 8, eabn8152 (2022).


Google Scholar
 

Farrell, F., Marchetti, M., Marenduzzo, D. & Tailleur, J. Pattern formation in self-propelled particles with density-dependent motility. Phys. Rev. Lett. 108, 248101 (2012).

ADS 

Google Scholar
 

Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108, 268303 (2012).

ADS 

Google Scholar
 

Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

ADS 

Google Scholar
 

Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

ADS 

Google Scholar
 

Bäuerle, T., Fischer, A., Speck, T. & Bechinger, C. Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018).

ADS 

Google Scholar
 

Liu, G. et al. Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 122, 248102 (2019).

ADS 

Google Scholar
 

Tobazéon, R. Electrohydrodynamic behaviour of single spherical or cylindrical conducting particles in an insulating liquid subjected to a uniform dc field. J. Phys. D 29, 2595 (1996).

ADS 

Google Scholar
 

Mersch, E. & Vandewalle, N. Antiphase synchronization of electrically shaken conducting beads. Phys. Rev. E 84, 061301 (2011).

ADS 

Google Scholar
 

Drews, A. M., Cartier, C. A. & Bishop, K. J. Contact charge electrophoresis: experiment and theory. Langmuir 31, 3808–3814 (2015).


Google Scholar
 

Eslami, G., Esmaeilzadeh, E. & Pérez, A. T. Modeling of conductive particle motion in viscous medium affected by an electric field considering particle-electrode interactions and microdischarge phenomenon. Phys. Fluids 28, 107102 (2016).

Dou, Y., Pandey, S., Cartier, C. A., Miller, O. & Bishop, K. J. Emergence of traveling waves in linear arrays of electromechanical oscillators. Commun. Phys. 1, 85 (2018).


Google Scholar
 

Han, M. et al. Fluctuating hydrodynamics of chiral active fluids. Nat. Phys. 17, 1260–1269 (2021).


Google Scholar
 

O’Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1504 (2017).

ADS 

Google Scholar
 

Zhang, Y. & Fodor, É. Pulsating active matter. Phys. Rev. Lett. 131, 238302 (2023).

ADS 
MathSciNet 

Google Scholar
 

Saint Jean, M., Guthmann, C. & Coupier, G. Relaxation and ordering processes in ‘macroscopic Wigner crystals’. Eur. Phys. J. B 39, 61–68 (2004).

ADS 

Google Scholar
 

Coupier, G. Élasticité et ancrage dans des cristaux de Wigner macroscopiques: un système modèle pour l’étude du piégeage faible. PhD thesis, Univ. Pierre et Marie Curie, Paris (2006).

Galatola, P., Coupier, G., Saint Jean, M., Fournier, J. B. & Guthmann, C. Determination of the interactions in confined macroscopic Wigner islands: theory and experiments. Eur. Phys. J. B 50, 549–557 (2006).

ADS 

Google Scholar
 

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).


Google Scholar
 

Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

ADS 

Google Scholar
 

Blair, D. & Dufresne, E. The MATLAB Particle Tracking Code Repository http://physics.georgetown.edu/matlab (2008).

Longuet-Higgins, H. C. A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981).

ADS 

Google Scholar
 

Le Blay, M., Saldi, J. H. K. & Morin, A. Control of collective activity to crystallize an oscillator gas. figshare https://doi.org/10.6084/m9.figshare.28661015 (2025).