Nature Restoration Law (European Commission, 2023); https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en
Holl, K. D. & Brancalion, P. H. Tree planting is not a simple solution. Science 368, 580–581 (2020).
Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 36, 20–28 (2021).
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).
Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).
Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).
Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).
Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Strassburg, B. B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on ‘the global tree restoration potential’. Science 366, eaaz0388 (2019).
Veldman, J. W. et al. Comment on ‘the global tree restoration potential’. Science 366, eaay7976 (2019).
Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859 (2020).
Aguirre-Gutiérrez, J., Stevens, N. & Berenguer, E. Valuing the functionality of tropical ecosystems beyond carbon. Trends Ecol. Evol. 38, 1109–1111 (2023).
Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).
Pellegrini, A. F. et al. Soil carbon storage capacity of drylands under altered fire regimes. Nat. Clim. Change 13, 1089–1094 (2023).
Stevens, N. & Bond, W. J. A trillion trees: carbon capture or fuelling fires? Trends Ecol. Evol. 39, 1–4 (2024).
Zhou, Y. et al. Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).
Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
Tölgyesi, C., Buisson, E., Helm, A., Temperton, V. M. & Török, P. Urgent need for updating the slogan of global climate actions from ‘tree planting’ to ‘restore native vegetation’. Restor. Ecol. 30, e13594 (2022).
Wieczorkowski, J. D. & Lehmann, C. E. Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide. Glob. Change Biol. 28, 5532–5546 (2022).
Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).
Rohatyn, S., Yakir, D., Rotenberg, E. & Carmel, Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science 377, 1436–1439 (2022).
Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).
Erdős, L. et al. How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest‐steppe. Biol. Rev. 97, 2195–2208 (2022).
Mattos, C. R. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120, e2301255120 (2023).
Doelman, J. C. & Stehfest, E. The risks of overstating the climate benefits of ecosystem restoration. Nature 609, E1–E3 (2022).
Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).
Williams, B. A. et al. Global potential for natural regeneration in deforested tropical regions. Nature 636, 131–137 (2024).
IPBES in Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES Secretariat, 2019).
Zhang, J., Ma, K. & Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 166, 139–148 (2010).
Mitchell, M. E. et al. Potential of water quality wetlands to mitigate habitat losses from agricultural drainage modernization. Sci. Total Environ. 838, 156358 (2022).
Anadón, J. D., Sala, O. E. & Maestre, F. T. Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).
Xu, X., Jia, G., Zhang, X., Riley, W. J. & Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Glob. Change Biol. 26, 5874–5885 (2020).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).
Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).
Ratnam, J. et al. Trees as nature-based solutions: a global south Perspective. One Earth 3, 140–144 (2020).
Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).
Temperton, V. M. et al. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).
Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soc. 25, 1 (2020).
Fleischman, F. et al. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience 70, 947–950 (2020).
Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).
Sardanyés, J., Ivančić, F. & Vidiella, B. Identifying regime shifts, transients and late warning signals for proactive ecosystem management. Biol. Conserv. 290, 110433 (2024).
Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
Bede‐Fazekas, Á. & Somodi, I. Precipitation and temperature timings underlying bioclimatic variables rearrange under climate change globally. Glob. Change Biol. 30, e17496 (2024).
Munang, R. et al. Climate change and ecosystem-based adaptation: a new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 5, 67–71 (2013).
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Change Biol. 24, 2390–2402 (2018).
Liu, H. et al. Nature‐based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 28, 2202–2220 (2022).
Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).
Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092 (2016).
Staude, I. R. et al. Prioritize grassland restoration to bend the curve of biodiversity loss. Restor. Ecol. 31, e13931 (2023).
Buchhorn, M. et al. Copernicus Global Land Service: land cover 100 m: collection 3: epoch 2019: globe (V3.0.1). Zenodo https://doi.org/10.5281/zenodo.3939038 (2020).
Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Current Opinion in. Environ. Sustain. 14, 101–108 (2015).
Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).
UNEP-WCMC and IUCN Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, 2019); www.protectedplanet.net
Lyons, K. G. et al. Challenges and opportunities for grassland restoration: a global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 46, e02612 (2023).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONEs 12, e0169748 (2017).
Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Report No. OFR 2011-1073 (US Geological Survey, 2011).
Baboo, S. S. & Devi, M. R. An analysis of different resampling methods in Coimbatore, District. Glob. J. Computer Sci. Technol. 10, 61–66 (2010).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Modell. 216, 316–322 (2008).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Döscher, R. et al. The EC-Earth3 earth system model for the coupled model intercomparison project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).
Pechanec, V. et al. Modelling of the carbon sequestration and its prediction under climate change. Ecol. Inform. 47, 50–54 (2018).
Land Use Systems of the World (FAO, 2010); https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/fc32c5de-440c-46aa-9cad-81f4c8b84c6a
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Carbon storage in EU terrestrial and marine ecosystems — European Environment Agency (EEA, 2022); https://www.eea.europa.eu/data-and-maps/data/carbon-storage-in-global-terrestrial
Zhou, T. et al. Age‐dependent forest carbon sink: estimation via inverse modeling. J. Geophys. Res.: Biogeosci. 120, 2473–2492 (2015).
Tölgyesi, C. et al. Global ecosystem restoration has unexpectedly low potential to mitigate climate change. Dryad https://doi.org/10.5061/dryad.ksn02v7g4 (2025).
Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).
Saunders, M. J., Jones, M. B. & Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetlands Ecol. Manage. 15, 489–498 (2007).
Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323 (2008).
Lü, X. T., Yin, J. X., Jepsen, M. R. & Tang, J. W. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage. 260, 1798–1803 (2010).
Adame, M. F. et al. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12, 3805–3818 (2015).
Akpa, S. I., Odeh, I. O., Bishop, T. F., Hartemink, A. E. & Amapu, I. Y. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 271, 202–215 (2016).
Hribljan, J. A., Suárez, E., Heckman, K. A., Lilleskov, E. A. & Chimner, R. A. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetland Ecol. Manage. 24, 113–127 (2016).
Kolka, R. K., Murdiyarso, D., Kauffman, J. B. & Birdsey, R. A. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities. Wetland Ecol. Manage. 24, 107–112 (2016).
Davila, A. & Bohlen, P. J. Hydro-ecological controls on soil carbon storage in subtropical freshwater depressional wetlands. Wetlands 41, 66 (2021).
Sjögersten, S. et al. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403, 115173 (2021).
Black, T. A. et al. Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Change Biol. 2, 219–229 (1996).
Frolking, S. et al. Modelling temporal variability in the carbon balance of a spruce/moss boreal forest. Glob. Change Biol. 2, 343–366 (1996).
Yarie, J. & Billings, S. Carbon balance of the taiga forest within Alaska: present and future. Can. J. For. Res. 32, 757–767 (2002).
Röser, C. et al. Net CO2 exchange rates in three different successional stages of the ‘Dark Taiga’ of central Siberia. Tellus B: Chem. Phys. Meteorol. 54, 642–654 (2002).
Suni, T. et al. Vesala, Interannual variability and timing of growing‐season CO2 exchange in a boreal forest. J. Geophys. Res.: Atmos. 108, D9 (2003).
Curtis, P. S. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric. For. Meteorol. 113, 3–19 (2002).
Urrutia-Jalabert, R., Malhi, Y. & Lara, A. The oldest, slowest rainforests in the world? Massive biomass and slow carbon dynamics of Fitzroya cupressoides temperate forests in southern Chile. PLoS ONE 10, e0137569 (2015).
Parada, T., Lusk, C. H. & Donoso, P. J. Evidence that emergent Nothofagus dombeyi do not depress carbon sequestration rates of canopy species in an old-growth Chilean temperate forest. N.Z. J. Bot. 56, 311–322 (2018).
Gough, C. M., Vogel, C. S., Harrold, K. H., George, K. & Curtis, P. S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Change Biol. 13, 1935–1949 (2007).
Michelsen, A., Andersson, M., Jensen, M., Kjøller, A. & Gashew, M. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biol. Biochem. 36, 1707–1717 (2004).
Vargas, R., Allen, M. F. & Allen, E. B. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob. Change Biol. 14, 109–124 (2008).
Coetsee, C., Gray, E. F., Wakeling, J., Wigley, B. J. & Bond, W. J. Low gains in ecosystem carbon with woody plant encroachment in a South African savanna. J. Trop. Ecol. 29, 49–60 (2013).
Cao, S., Sanchez-Azofeifa, G. A., Duran, S. M. & Calvo-Rodriguez, S. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie–Ames–Stanford approach (CASA) model. Environ. Res. Lett. 11, 075004 (2016).
Pereira Júnior, L. R. Carbon stocks in a tropical dry forest in Brazil. Rev. Cienc. Agron. 47, 32–40 (2016).
Abreu et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).
Pelletier, J. et al. Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environ. Res. Lett. 13, 094017 (2018).
Calvo-Rodriguez, S., Sanchez-Azofeifa, G. A., Duran, S. M., Do Espirito-Santo, M. M. & Ferreira Nunes, Y. R. Dynamics of carbon accumulation in tropical dry forests under climate change extremes. Forests 12, 106 (2021).
Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).
Yadav, V. S. et al. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol. Eng. 176, 106541 (2022).
Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).
DeFries, R. S. et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl Acad. Sci. USA 99, 14256–14261 (2002).
Hamilton, J. G. et al. Forest carbon balance under elevated CO2. Oecologia 131, 250–260 (2002).
Nascimento, H. E. & Laurance, W. F. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For. Ecol. Manage. 168, 311–321 (2002).
Lasco, R. D. & Pulhin, F. B. Philippine forest ecosystems and climate change: carbon stocks, rate of sequestration and the Kyoto Protocol. Ann. Trop. Res. 25, 37–52 (2003).
Gibbs, H. K., Brown, S., Niles, J. O. & Foley, A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).
Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol. Manage. 243, 299–309 (2007).
Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).
Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evol. 15, 332–337 (2000).
Ngo, K. M. et al. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manage. 296, 81–89 (2013).
Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For. Ecol. Manage. 373, 44–55 (2016).
Zaragoza, M. J. G., Aranico, E. C., Tampus, A. D. & Amparado, R. F. Jr Carbon stock assessment of three different vegetative covers in Kapatagan, Lanao del Norte, Philippines. Adv. Environ. Sci. 8, 205–220 (2016).
Ray, R. et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45, 5016–5024 (2011).
Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manage. 3, 313–322 (2012).
Alongi, D. M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6, 195–219 (2014).
Kauffman, J. B., Heider, C., Norfolk, J. & Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527 (2014).
Gnanamoorthy, P. et al. Soil organic carbon stock in natural and restored mangrove forests in Pichavaram south-east coast of India. Indian J. Geo Mar. Sci. 48, 801–808 (2019).
Adame et al. Future carbon emissions from global mangrove forest loss. Glob. Change Biol. 27, 2856–2866 (2021).
Luo, H. et al. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Glob. Change Biol. 13, 386–396 (2007).
Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B: Biol. Sci. 274, 2753–2759 (2007).
Beier, C. et al. Carbon and nitrogen balances for six shrublands across Europe. Glob. Biogeochem. Cycles 23, GB4008 (2009).
Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G. & Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 91, 22–30 (2013).
Stamati, F. E., Nikolaidis, N. P. & Schnoor, J. L. Modeling topsoil carbon sequestration in two contrasting crop production to set-aside conversions with RothC–Calibration issues and uncertainty analysis. Agric. Ecosyst. Environ. 165, 190–200 (2013).
Nie, X. et al. Distribution and controlling factors of soil organic carbon storage in the northeast Tibetan shrublands. J. Soils Sediments 19, 322–331 (2019).
Zhao, M. et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38 (2019).
Chen, X., Hutley, L. B. & Eamus, D. Carbon balance of a tropical savanna of northern Australia. Oecologia 137, 405–416 (2003).
Hutley, L. B., Leuning, R., Beringer, J. & Cleugh, H. A. The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Aust. J. Bot. 53, 663–675 (2005).
Grace, J., Jose, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
Blaser, W. J., Shanungu, G. K., Edwards, P. J. & Olde Venterink, H. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration. Ecol. Evol. 4, 1423–1438 (2014).
Fei, X. et al. Eddy covariance and biometric measurement s show that a savanna ecosystem in Southwest China is a carbon sink. Sci. Rep. 7, 41025 (2017).
Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).
Derner, J. D., Boutton, T. W. & Briske, D. D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280, 77–90 (2006).
Guzman, J. G. & Al-Kaisi, M. Landscape position and age of reconstructed prairies effect on soil organic carbon sequestration rate and aggregate associated carbon. J. Soil Water Conserv. 65, 9–21 (2010).
DeLuca, T. H. & Zabinski, C. A. Prairie ecosystems and the carbon problem. Front. Ecol. Environ. 9, 407–413 (2011).
Ampleman, M. D., Crawford, K. M. & Fike, D. A. Differential soil organic carbon storage at forb- and grass-dominated plant communities, 33 years after tallgrass prairie restoration. Plant Soil 374, 899–913 (2014).
Salemme, R. K., Olson, K. R., Gennadiyev, A. N. & Kovach, R. G. Effects of land use change, cultivation, and landscape position on prairie soil organic carbon stocks. Open J. Soil Sci. 8, 163–173 (2018).
Fisher, M. J. et al. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238 (1994).
Post, W. M. & Kwon, K. C. Soil carbon sequestration and land‐use change: processes and potential. Glob. Change Biol. 6, 317–327 (2006).
Archer, S. et al. (eds) in Global Environmental Change in the Ocean and on Land 359–373 (Terrapub, 2004).
Vågen, T. G., Lal, R. & Singh, B. R. Soil carbon sequestration in sub‐Saharan Africa: a review. Land Degrad. Dev. 16, 53–71 (2005).
Boutton, T. W., Liao, J. D., Filley, T. R. & Archer, S. R. Belowground carbon storage and dynamics accompanying woody plant encroachment in a subtropical savanna. Soil Carbon Sequestration Greenhouse Eff. 57, 181–205 (2009).
Maia, S. M., Ogle, S. M., Cerri, C. E. & Cerri, C. C. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149, 84–91 (2009).
Räsänen, M. et al. Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences 14, 1039–1054 (2017).
Awuah, J., Smith, S. W., Speed, J. D. & Graae, B. J. Can seasonal fire management reduce the risk of carbon loss from wildfires in a protected Guinea savanna? Ecosphere 13, e4283 (2022).
Zhou, Y. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 16, 710–716 (2023).