Nature Restoration Law (European Commission, 2023); https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en

Holl, K. D. & Brancalion, P. H. Tree planting is not a simple solution. Science 368, 580–581 (2020).

CAS 

Google Scholar
 

Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 36, 20–28 (2021).


Google Scholar
 

Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

CAS 

Google Scholar
 

Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).


Google Scholar
 

Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).


Google Scholar
 

Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).

CAS 

Google Scholar
 

Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

CAS 

Google Scholar
 

Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

CAS 

Google Scholar
 

Strassburg, B. B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

CAS 

Google Scholar
 

Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on ‘the global tree restoration potential’. Science 366, eaaz0388 (2019).

CAS 

Google Scholar
 

Veldman, J. W. et al. Comment on ‘the global tree restoration potential’. Science 366, eaay7976 (2019).


Google Scholar
 

Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859 (2020).


Google Scholar
 

Aguirre-Gutiérrez, J., Stevens, N. & Berenguer, E. Valuing the functionality of tropical ecosystems beyond carbon. Trends Ecol. Evol. 38, 1109–1111 (2023).


Google Scholar
 

Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).


Google Scholar
 

Pellegrini, A. F. et al. Soil carbon storage capacity of drylands under altered fire regimes. Nat. Clim. Change 13, 1089–1094 (2023).

CAS 

Google Scholar
 

Stevens, N. & Bond, W. J. A trillion trees: carbon capture or fuelling fires? Trends Ecol. Evol. 39, 1–4 (2024).

CAS 

Google Scholar
 

Zhou, Y. et al. Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).

CAS 

Google Scholar
 

Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

CAS 

Google Scholar
 

Tölgyesi, C., Buisson, E., Helm, A., Temperton, V. M. & Török, P. Urgent need for updating the slogan of global climate actions from ‘tree planting’ to ‘restore native vegetation’. Restor. Ecol. 30, e13594 (2022).


Google Scholar
 

Wieczorkowski, J. D. & Lehmann, C. E. Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide. Glob. Change Biol. 28, 5532–5546 (2022).

CAS 

Google Scholar
 

Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

CAS 

Google Scholar
 

Rohatyn, S., Yakir, D., Rotenberg, E. & Carmel, Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science 377, 1436–1439 (2022).

CAS 

Google Scholar
 

Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).

CAS 

Google Scholar
 

Erdős, L. et al. How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest‐steppe. Biol. Rev. 97, 2195–2208 (2022).


Google Scholar
 

Mattos, C. R. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120, e2301255120 (2023).

CAS 

Google Scholar
 

Doelman, J. C. & Stehfest, E. The risks of overstating the climate benefits of ecosystem restoration. Nature 609, E1–E3 (2022).

CAS 

Google Scholar
 

Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

CAS 

Google Scholar
 

Williams, B. A. et al. Global potential for natural regeneration in deforested tropical regions. Nature 636, 131–137 (2024).

CAS 

Google Scholar
 

IPBES in Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES Secretariat, 2019).

Zhang, J., Ma, K. & Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 166, 139–148 (2010).


Google Scholar
 

Mitchell, M. E. et al. Potential of water quality wetlands to mitigate habitat losses from agricultural drainage modernization. Sci. Total Environ. 838, 156358 (2022).

CAS 

Google Scholar
 

Anadón, J. D., Sala, O. E. & Maestre, F. T. Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).


Google Scholar
 

Xu, X., Jia, G., Zhang, X., Riley, W. J. & Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Glob. Change Biol. 26, 5874–5885 (2020).


Google Scholar
 

Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

CAS 

Google Scholar
 

Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).


Google Scholar
 

Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).

CAS 

Google Scholar
 

Ratnam, J. et al. Trees as nature-based solutions: a global south Perspective. One Earth 3, 140–144 (2020).


Google Scholar
 

Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).

CAS 

Google Scholar
 

Temperton, V. M. et al. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).


Google Scholar
 

Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).


Google Scholar
 

Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soc. 25, 1 (2020).


Google Scholar
 

Fleischman, F. et al. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience 70, 947–950 (2020).


Google Scholar
 

Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).


Google Scholar
 

Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).


Google Scholar
 

Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).


Google Scholar
 

Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

CAS 

Google Scholar
 

Sardanyés, J., Ivančić, F. & Vidiella, B. Identifying regime shifts, transients and late warning signals for proactive ecosystem management. Biol. Conserv. 290, 110433 (2024).


Google Scholar
 

Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).


Google Scholar
 

Bede‐Fazekas, Á. & Somodi, I. Precipitation and temperature timings underlying bioclimatic variables rearrange under climate change globally. Glob. Change Biol. 30, e17496 (2024).


Google Scholar
 

Munang, R. et al. Climate change and ecosystem-based adaptation: a new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 5, 67–71 (2013).


Google Scholar
 

Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).


Google Scholar
 

Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Change Biol. 24, 2390–2402 (2018).


Google Scholar
 

Liu, H. et al. Nature‐based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 28, 2202–2220 (2022).

CAS 

Google Scholar
 

Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

CAS 

Google Scholar
 

Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).


Google Scholar
 

Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092 (2016).


Google Scholar
 

Staude, I. R. et al. Prioritize grassland restoration to bend the curve of biodiversity loss. Restor. Ecol. 31, e13931 (2023).


Google Scholar
 

Buchhorn, M. et al. Copernicus Global Land Service: land cover 100 m: collection 3: epoch 2019: globe (V3.0.1). Zenodo https://doi.org/10.5281/zenodo.3939038 (2020).

Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Current Opinion in. Environ. Sustain. 14, 101–108 (2015).


Google Scholar
 

Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).


Google Scholar
 

UNEP-WCMC and IUCN Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, 2019); www.protectedplanet.net

Lyons, K. G. et al. Challenges and opportunities for grassland restoration: a global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 46, e02612 (2023).


Google Scholar
 

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).


Google Scholar
 

Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONEs 12, e0169748 (2017).


Google Scholar
 

Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Report No. OFR 2011-1073 (US Geological Survey, 2011).

Baboo, S. S. & Devi, M. R. An analysis of different resampling methods in Coimbatore, District. Glob. J. Computer Sci. Technol. 10, 61–66 (2010).


Google Scholar
 

Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).


Google Scholar
 

Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Modell. 216, 316–322 (2008).


Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).


Google Scholar
 

Döscher, R. et al. The EC-Earth3 earth system model for the coupled model intercomparison project 6. Geosci. Model Dev. 15, 2973–3020 (2022).


Google Scholar
 

Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).


Google Scholar
 

Pechanec, V. et al. Modelling of the carbon sequestration and its prediction under climate change. Ecol. Inform. 47, 50–54 (2018).


Google Scholar
 

Land Use Systems of the World (FAO, 2010); https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/fc32c5de-440c-46aa-9cad-81f4c8b84c6a

Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).


Google Scholar
 

Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

CAS 

Google Scholar
 

Carbon storage in EU terrestrial and marine ecosystems — European Environment Agency (EEA, 2022); https://www.eea.europa.eu/data-and-maps/data/carbon-storage-in-global-terrestrial

Zhou, T. et al. Age‐dependent forest carbon sink: estimation via inverse modeling. J. Geophys. Res.: Biogeosci. 120, 2473–2492 (2015).

CAS 

Google Scholar
 

Tölgyesi, C. et al. Global ecosystem restoration has unexpectedly low potential to mitigate climate change. Dryad https://doi.org/10.5061/dryad.ksn02v7g4 (2025).

Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).


Google Scholar
 

Saunders, M. J., Jones, M. B. & Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetlands Ecol. Manage. 15, 489–498 (2007).

CAS 

Google Scholar
 

Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323 (2008).


Google Scholar
 

Lü, X. T., Yin, J. X., Jepsen, M. R. & Tang, J. W. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage. 260, 1798–1803 (2010).


Google Scholar
 

Adame, M. F. et al. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12, 3805–3818 (2015).


Google Scholar
 

Akpa, S. I., Odeh, I. O., Bishop, T. F., Hartemink, A. E. & Amapu, I. Y. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 271, 202–215 (2016).

CAS 

Google Scholar
 

Hribljan, J. A., Suárez, E., Heckman, K. A., Lilleskov, E. A. & Chimner, R. A. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetland Ecol. Manage. 24, 113–127 (2016).

CAS 

Google Scholar
 

Kolka, R. K., Murdiyarso, D., Kauffman, J. B. & Birdsey, R. A. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities. Wetland Ecol. Manage. 24, 107–112 (2016).


Google Scholar
 

Davila, A. & Bohlen, P. J. Hydro-ecological controls on soil carbon storage in subtropical freshwater depressional wetlands. Wetlands 41, 66 (2021).


Google Scholar
 

Sjögersten, S. et al. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403, 115173 (2021).


Google Scholar
 

Black, T. A. et al. Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Change Biol. 2, 219–229 (1996).


Google Scholar
 

Frolking, S. et al. Modelling temporal variability in the carbon balance of a spruce/moss boreal forest. Glob. Change Biol. 2, 343–366 (1996).


Google Scholar
 

Yarie, J. & Billings, S. Carbon balance of the taiga forest within Alaska: present and future. Can. J. For. Res. 32, 757–767 (2002).


Google Scholar
 

Röser, C. et al. Net CO2 exchange rates in three different successional stages of the ‘Dark Taiga’ of central Siberia. Tellus B: Chem. Phys. Meteorol. 54, 642–654 (2002).


Google Scholar
 

Suni, T. et al. Vesala, Interannual variability and timing of growing‐season CO2 exchange in a boreal forest. J. Geophys. Res.: Atmos. 108, D9 (2003).


Google Scholar
 

Curtis, P. S. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric. For. Meteorol. 113, 3–19 (2002).


Google Scholar
 

Urrutia-Jalabert, R., Malhi, Y. & Lara, A. The oldest, slowest rainforests in the world? Massive biomass and slow carbon dynamics of Fitzroya cupressoides temperate forests in southern Chile. PLoS ONE 10, e0137569 (2015).


Google Scholar
 

Parada, T., Lusk, C. H. & Donoso, P. J. Evidence that emergent Nothofagus dombeyi do not depress carbon sequestration rates of canopy species in an old-growth Chilean temperate forest. N.Z. J. Bot. 56, 311–322 (2018).


Google Scholar
 

Gough, C. M., Vogel, C. S., Harrold, K. H., George, K. & Curtis, P. S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Change Biol. 13, 1935–1949 (2007).


Google Scholar
 

Michelsen, A., Andersson, M., Jensen, M., Kjøller, A. & Gashew, M. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biol. Biochem. 36, 1707–1717 (2004).

CAS 

Google Scholar
 

Vargas, R., Allen, M. F. & Allen, E. B. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob. Change Biol. 14, 109–124 (2008).


Google Scholar
 

Coetsee, C., Gray, E. F., Wakeling, J., Wigley, B. J. & Bond, W. J. Low gains in ecosystem carbon with woody plant encroachment in a South African savanna. J. Trop. Ecol. 29, 49–60 (2013).


Google Scholar
 

Cao, S., Sanchez-Azofeifa, G. A., Duran, S. M. & Calvo-Rodriguez, S. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie–Ames–Stanford approach (CASA) model. Environ. Res. Lett. 11, 075004 (2016).


Google Scholar
 

Pereira Júnior, L. R. Carbon stocks in a tropical dry forest in Brazil. Rev. Cienc. Agron. 47, 32–40 (2016).


Google Scholar
 

Abreu et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).


Google Scholar
 

Pelletier, J. et al. Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environ. Res. Lett. 13, 094017 (2018).


Google Scholar
 

Calvo-Rodriguez, S., Sanchez-Azofeifa, G. A., Duran, S. M., Do Espirito-Santo, M. M. & Ferreira Nunes, Y. R. Dynamics of carbon accumulation in tropical dry forests under climate change extremes. Forests 12, 106 (2021).


Google Scholar
 

Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).

CAS 

Google Scholar
 

Yadav, V. S. et al. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol. Eng. 176, 106541 (2022).


Google Scholar
 

Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).


Google Scholar
 

DeFries, R. S. et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl Acad. Sci. USA 99, 14256–14261 (2002).

CAS 

Google Scholar
 

Hamilton, J. G. et al. Forest carbon balance under elevated CO2. Oecologia 131, 250–260 (2002).


Google Scholar
 

Nascimento, H. E. & Laurance, W. F. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For. Ecol. Manage. 168, 311–321 (2002).


Google Scholar
 

Lasco, R. D. & Pulhin, F. B. Philippine forest ecosystems and climate change: carbon stocks, rate of sequestration and the Kyoto Protocol. Ann. Trop. Res. 25, 37–52 (2003).


Google Scholar
 

Gibbs, H. K., Brown, S., Niles, J. O. & Foley, A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).


Google Scholar
 

Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol. Manage. 243, 299–309 (2007).


Google Scholar
 

Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

CAS 

Google Scholar
 

Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evol. 15, 332–337 (2000).

CAS 

Google Scholar
 

Ngo, K. M. et al. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manage. 296, 81–89 (2013).


Google Scholar
 

Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For. Ecol. Manage. 373, 44–55 (2016).


Google Scholar
 

Zaragoza, M. J. G., Aranico, E. C., Tampus, A. D. & Amparado, R. F. Jr Carbon stock assessment of three different vegetative covers in Kapatagan, Lanao del Norte, Philippines. Adv. Environ. Sci. 8, 205–220 (2016).


Google Scholar
 

Ray, R. et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45, 5016–5024 (2011).

CAS 

Google Scholar
 

Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manage. 3, 313–322 (2012).

CAS 

Google Scholar
 

Alongi, D. M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6, 195–219 (2014).


Google Scholar
 

Kauffman, J. B., Heider, C., Norfolk, J. & Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527 (2014).


Google Scholar
 

Gnanamoorthy, P. et al. Soil organic carbon stock in natural and restored mangrove forests in Pichavaram south-east coast of India. Indian J. Geo Mar. Sci. 48, 801–808 (2019).


Google Scholar
 

Adame et al. Future carbon emissions from global mangrove forest loss. Glob. Change Biol. 27, 2856–2866 (2021).

CAS 

Google Scholar
 

Luo, H. et al. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Glob. Change Biol. 13, 386–396 (2007).


Google Scholar
 

Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B: Biol. Sci. 274, 2753–2759 (2007).

CAS 

Google Scholar
 

Beier, C. et al. Carbon and nitrogen balances for six shrublands across Europe. Glob. Biogeochem. Cycles 23, GB4008 (2009).


Google Scholar
 

Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G. & Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 91, 22–30 (2013).


Google Scholar
 

Stamati, F. E., Nikolaidis, N. P. & Schnoor, J. L. Modeling topsoil carbon sequestration in two contrasting crop production to set-aside conversions with RothC–Calibration issues and uncertainty analysis. Agric. Ecosyst. Environ. 165, 190–200 (2013).


Google Scholar
 

Nie, X. et al. Distribution and controlling factors of soil organic carbon storage in the northeast Tibetan shrublands. J. Soils Sediments 19, 322–331 (2019).

CAS 

Google Scholar
 

Zhao, M. et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38 (2019).


Google Scholar
 

Chen, X., Hutley, L. B. & Eamus, D. Carbon balance of a tropical savanna of northern Australia. Oecologia 137, 405–416 (2003).


Google Scholar
 

Hutley, L. B., Leuning, R., Beringer, J. & Cleugh, H. A. The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Aust. J. Bot. 53, 663–675 (2005).


Google Scholar
 

Grace, J., Jose, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).


Google Scholar
 

Blaser, W. J., Shanungu, G. K., Edwards, P. J. & Olde Venterink, H. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration. Ecol. Evol. 4, 1423–1438 (2014).


Google Scholar
 

Fei, X. et al. Eddy covariance and biometric measurement s show that a savanna ecosystem in Southwest China is a carbon sink. Sci. Rep. 7, 41025 (2017).

CAS 

Google Scholar
 

Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).


Google Scholar
 

Derner, J. D., Boutton, T. W. & Briske, D. D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280, 77–90 (2006).

CAS 

Google Scholar
 

Guzman, J. G. & Al-Kaisi, M. Landscape position and age of reconstructed prairies effect on soil organic carbon sequestration rate and aggregate associated carbon. J. Soil Water Conserv. 65, 9–21 (2010).


Google Scholar
 

DeLuca, T. H. & Zabinski, C. A. Prairie ecosystems and the carbon problem. Front. Ecol. Environ. 9, 407–413 (2011).


Google Scholar
 

Ampleman, M. D., Crawford, K. M. & Fike, D. A. Differential soil organic carbon storage at forb- and grass-dominated plant communities, 33 years after tallgrass prairie restoration. Plant Soil 374, 899–913 (2014).

CAS 

Google Scholar
 

Salemme, R. K., Olson, K. R., Gennadiyev, A. N. & Kovach, R. G. Effects of land use change, cultivation, and landscape position on prairie soil organic carbon stocks. Open J. Soil Sci. 8, 163–173 (2018).

CAS 

Google Scholar
 

Fisher, M. J. et al. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238 (1994).


Google Scholar
 

Post, W. M. & Kwon, K. C. Soil carbon sequestration and land‐use change: processes and potential. Glob. Change Biol. 6, 317–327 (2006).


Google Scholar
 

Archer, S. et al. (eds) in Global Environmental Change in the Ocean and on Land 359–373 (Terrapub, 2004).

Vågen, T. G., Lal, R. & Singh, B. R. Soil carbon sequestration in sub‐Saharan Africa: a review. Land Degrad. Dev. 16, 53–71 (2005).


Google Scholar
 

Boutton, T. W., Liao, J. D., Filley, T. R. & Archer, S. R. Belowground carbon storage and dynamics accompanying woody plant encroachment in a subtropical savanna. Soil Carbon Sequestration Greenhouse Eff. 57, 181–205 (2009).

CAS 

Google Scholar
 

Maia, S. M., Ogle, S. M., Cerri, C. E. & Cerri, C. C. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149, 84–91 (2009).

CAS 

Google Scholar
 

Räsänen, M. et al. Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences 14, 1039–1054 (2017).


Google Scholar
 

Awuah, J., Smith, S. W., Speed, J. D. & Graae, B. J. Can seasonal fire management reduce the risk of carbon loss from wildfires in a protected Guinea savanna? Ecosphere 13, e4283 (2022).


Google Scholar
 

Zhou, Y. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 16, 710–716 (2023).


Google Scholar