Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).
Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).
Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2021).
Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).
Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271 (2014).
Croquette, M. et al. Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Sci. 5, 014403 (2023).
DeWitt, C. M. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Edition Open Sources, 2011).
Belenchia, A. et al. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D 98, 126009 (2018).
Guo, J., Norte, R. & Gröblacher, S. Feedback cooling of a room temperature mechanical oscillator close to its motional ground state. Phys. Rev. Lett. 123, 223602 (2019).
Tendick, L., Kampermann, H. & Bruß, D. Quantifying necessary quantum resources for nonlocality. Phys. Rev. Res. 4, L012002 (2022).
Roda-Llordes, M., Riera-Campeny, A., Candoli, D., Grochowski, P. T. & Romero-Isart, O. Macroscopic quantum superpositions via dynamics in a wide double-well potential. Phys. Rev. Lett. 132, 023601 (2024).
Paris, M. G. A., Illuminati, F., Serafini, A. & De Siena, S. Purity of Gaussian states: measurement schemes and time evolution in noisy channels. Phys. Rev. A 68, 012314 (2003).
Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).
Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199 (2017).
Youssefi, A., Kono, S., Chegnizadeh, M. & Kippenberg, T. J. A squeezed mechanical oscillator with millisecond quantum decoherence. Nat. Phys. 19, 1697 (2023).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011).
Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).
Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595, 378 (2021).
Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).
Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, 168 (2021).
Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373 (2021).
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).
Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro-and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725 (2024).
Huang, G., Beccari, A., Engelsen, N. J. & Kippenberg, T. J. Room-temperature quantum optomechanics using an ultralow noise cavity. Nature 626, 512–516 (2024).
Schäfer, J., Rudolph, H., Hornberger, K. & Stickler, B. A. Cooling nanorotors by elliptic coherent scattering. Phys. Rev. Lett. 126, 163603 (2021).
Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).
Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2, 043054 (2020).
Stickler, B. A., Hornberger, K. & Kim, M. S. Quantum rotations of nanoparticles. Nat. Rev. Phys. 3, 589 (2021).
Gao, J. et al. Feedback cooling a levitated nanoparticle’s libration to below 100 phonons. Phys. Rev. Res. 6, 033009 (2024).
Parniak, M., Galinskiy, I., Zwettler, T. & Polzik, E. S. High-frequency broadband laser phase noise cancellation using a delay line. Opt. Express 29, 6935 (2021).
Pontin, A., Fu, H., Toroš, M., Monteiro, T. S. & Barker, P. F. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys. 19, 1003 (2023).
Kamba, M., Shimizu, R. & Aikawa, K. Nanoscale feedback control of six degrees of freedom of a near-sphere. Nat. Commun. 14, 7943 (2023).
Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008).
Rudolph, H., Schäfer, J., Stickler, B. A. & Hornberger, K. Theory of nanoparticle cooling by elliptic coherent scattering. Phys. Rev. A 103, 043514 (2021).
Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett. 123, 153601 (2019).
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).
Piotrowski, J. et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nat. Phys. 19, 1009 (2023).
Jayich, A. M. et al. Cryogenic optomechanics with a Si3N4 membrane and classical laser noise. New J. Phys. 14, 115018 (2012).
Safavi-Naeini, A. H. et al. Laser noise in cavity-optomechanical cooling and thermometry. New J. Phys. 15, 035007 (2013).
Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).
van der Laan, F. et al. Sub-Kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).
Rabl, P., Genes, C., Hammerer, K. & Aspelmeyer, M. Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009).
Rossi, M. et al. Quantum delocalization of a levitated nanoparticle. Phys. Rev. Lett. https://doi.org/10.1103/2yzc-fsm3 (2025).
Stickler, B. A. et al. Probing macroscopic quantum superpositions with nanorotors. New J. Phys. 20, 122001 (2018).
Kustura, K. et al. Mechanical squeezing via unstable dynamics in a microcavity. Phys. Rev. Lett. 128, 143601 (2022).
Ma, Y., Khosla, K. E., Stickler, B. A. & Kim, M. S. Quantum persistent tennis racket dynamics of nanorotors. Phys. Rev. Lett. 125, 053604 (2020).
Bykov, D. S., Dania, L., Goschin, F. & Northup, T. E. A nanoparticle stored with an atomic ion in a linear Paul trap. Preprint at https://arxiv.org/abs/2403.02034 (2024).
Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).