Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

ADS 

Google Scholar
 

Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

ADS 

Google Scholar
 

Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. Lett. 865, L3 (2018).

ADS 

Google Scholar
 

Cooke, B. A. Two short lived X-ray transients at high Galactic latitude. Nature 261, 564–566 (1976).

ADS 

Google Scholar
 

Rappaport, S. et al. A fast transient source of hard X-rays at high Galactic latitude. Astrophys. J. Lett. 206, L139–L142 (1976).

ADS 

Google Scholar
 

Soderberg, A. M. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

ADS 

Google Scholar
 

Jonker, P. G. et al. Discovery of a new kind of explosive X-ray transient near M86. Astrophys. J. 779, 14 (2013).

ADS 

Google Scholar
 

Glennie, A., Jonker, P. G., Fender, R. P., Nagayama, T. & Pretorius, M. L. Two fast X-ray transients in archival Chandra data. Mon. Not. R. Astron. Soc. 450, 3765–3770 (2015).

ADS 

Google Scholar
 

Bauer, F. E. et al. A new, faint population of X-ray transients. Mon. Not. R. Astron. Soc. 467, 4841–4857 (2017).

ADS 

Google Scholar
 

Lin, D., Irwin, J. A., Berger, E. & Nguyen, R. Discovery of three candidate magnetar-powered fast X-ray transients from Chandra archival data. Astrophys. J. 927, 211 (2022).

ADS 

Google Scholar
 

Quirola-Vásquez, J. et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2000-2014). Astron. Astrophys. 663, A168 (2022).


Google Scholar
 

Quirola-Vásquez, J. et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2014-2022). Astron. Astrophys. 675, A44 (2023).


Google Scholar
 

Alp, D. & Larsson, J. Blasts from the past: supernova shock breakouts among X-ray transients in the XMM-Newton archive. Astrophys. J. 896, 39 (2020).

ADS 

Google Scholar
 

Novara, G. et al. A supernova candidate at z = 0.092 in XMM-Newton archival data. Astrophys. J. 898, 37 (2020).

ADS 

Google Scholar
 

Zhang, B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars. Astrophys. J. Lett. 763, L22 (2013).

ADS 

Google Scholar
 

MacLeod, M., Guillochon, J., Ramirez-Ruiz, E., Kasen, D. & Rosswog, S. Optical thermonuclear transients from tidal compression of white dwarfs as tracers of the low end of the massive black hole mass function. Astrophys. J. 819, 3 (2016).

ADS 

Google Scholar
 

Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, 2017).

Nakar, E. & Piran, T. The observable signatures of GRB cocoons. Astrophys. J. 834, 28 (2017).

ADS 

Google Scholar
 

Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).

ADS 

Google Scholar
 

Levan, A. J. et al. Heavy-element production in a compact object merger observed by JWST. Nature 626, 737–741 (2024).

ADS 

Google Scholar
 

Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).

ADS 

Google Scholar
 

Soderberg, A. M. et al. A redshift determination for XRF 020903: first spectroscopic observations of an X-ray flash. Astrophys. J. 606, 994–999 (2004).

ADS 

Google Scholar
 

Yuan, W. et al. Einstein Probe – a small mission to monitor and explore the dynamic X-ray Universe. Preprint at https://doi.org/10.48550/arXiv.1506.07735 (2015).

Yuan, W., Zhang, C., Chen, Y. & Ling, Z. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Sangangelo, A.) 1–30 (Springer, 2022).

Liu, Y. et al. Soft X-ray prompt emission from the high-redshift gamma-ray burst EP240315a. Nat. Astron. 9, 564–576 (2025).


Google Scholar
 

Sun, H. et al. Extragalactic fast X-ray transient from a weak relativistic jet associated with a type Ic-BL supernova. Nat. Astron. 9, 1073–1073 (2025).


Google Scholar
 

Xinwen, S. et al. EP241021a: a months-duration X-ray transient with luminous optical and radio emission. Preprint at https://doi.org/10.48550/arXiv.2505.07665 (2025).

Ricci, R. et al. Long-term radio monitoring of the fast X-ray transient EP 240315a: evidence for a relativistic Jet. Astrophys. J. Lett. 979, L28 (2025).


Google Scholar
 

Gao, H.-X. et al. The soft X-ray aspect of gamma-ray bursts in the Einstein Probe era. Astrophys. J. 986, 106 (2024).

van Dalen, J. N. D. et al. The Einstein Probe transient EP240414a: linking fast X-ray transients, gamma-ray bursts, and luminous fast blue optical transients. Astrophys. J. Lett. 982, L47 (2025).


Google Scholar
 

Srivastav, S. et al. Identification of the optical counterpart of the fast X-ray transient EP240414a. Astrophys. J. Lett. 978, L21 (2025).


Google Scholar
 

Busmann, M. et al. The curious case of EP241021a: unraveling the mystery of its exceptional rebrightening. Preprint at https://doi.org/10.48550/arXiv.2503.14588 (2025).

Gianfagna, G. et al. The soft X-ray transient EP241021a: a cosmic explosion with a complex off-axis jet and cocoon from a massive progenitor. Preprint at https://doi.org/10.48550/arXiv.2505.05444 (2025).

Eyles-Ferris, R. A. J. et al. The kangaroo’s first hop: the early fast cooling phase of EP250108a/SN 2025kg. Astrophys. J. Lett. 988, L14E (2025).


Google Scholar
 

Rastinejad, J. C. et al. EP 250108a/SN 2025kg: observations of the most nearby broad-line type Ic supernova following an Einstein Probe fast X-ray transient. Astrophys. J. Lett. 988, L13 (2025).


Google Scholar
 

Tanvir, N. R. et al. Exploration of the high-redshift Universe enabled by THESEUS. Exp. Astron. 52, 219–244 (2021).

ADS 

Google Scholar
 

Tanvir, N. R. et al. Star formation in the early Universe: beyond the tip of the iceberg. Astrophys. J. 754, 46 (2012).

ADS 

Google Scholar
 

Heintz, K. E. et al. The cosmic buildup of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3. Astron. Astrophys. 679, A91 (2023).


Google Scholar
 

Fausey, H. M. et al. Neutral fraction of hydrogen in the intergalactic medium surrounding high-redshift gamma-ray burst 210905A. Mon. Not. R. Astron. Soc. 536, 2839–2856 (2025).


Google Scholar
 

Tanvir, N. R. et al. The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Mon. Not. R. Astron. Soc. 483, 5380–5408 (2019).

ADS 

Google Scholar
 

Vielfaure, J. B. et al. Lyman continuum leakage in faint star-forming galaxies at redshift z = 3–3.5 probed by gamma-ray bursts. Astron. Astrophys. 641, A30 (2020).


Google Scholar
 

Zhang, W. J. et al. Einstein Probe detected of a fast X-ray transient EP240315a. GRB Coordinates Network 35931, 1 (2024).


Google Scholar
 

Svinkin, D. et al. Konus-Wind detection of GRB 240315C (possible counterpart of EP240315a). GRB Coordinates Network 35972, 1 (2024).


Google Scholar
 

DeLaunay, J. et al. GRB 240315C / X-ray transient EP240315a: Swift/BAT detection. GRB Coordinates Network 35971, 1 (2024).


Google Scholar
 

Piro, L. et al. Probing the environment in gamma-ray bursts: the case of an X-ray precursor, afterglow late onset, and wind versus constant density profile in GRB 011121 and GRB 011211. Astrophys. J. 623, 314–324 (2005).

ADS 

Google Scholar
 

Frontera, F. et al. Prompt and afterglow emission from the X-ray-rich GRB 981226 observed with BeppoSAX. Astrophys. J. 540, 697–703 (2000).

ADS 

Google Scholar
 

in ’t Zand, J. J. M., Heise, J., van Paradijs, J. & Fenimore, E. E. The prompt X-ray emission of gamma-ray burst 980519. Astrophys. J. Lett. 516, L57–L60 (1999).

ADS 

Google Scholar
 

Levan, A. J. et al. A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 781, 13 (2014).

ADS 

Google Scholar
 

Srivastav, S. et al. X-ray transient EP240315a: ATLAS detection of a possible optical counterpart AT2024eju. GRB Coordinates Network 35932, 1 (2024).


Google Scholar
 

Gillanders, J. H. et al. Discovery of the optical and radio counterpart to the fast X-ray transient EP 240315a. Astrophys. J. Lett. 969, L14 (2024).


Google Scholar
 

Quirola-Vásquez, J. et al. X-ray transient EP240315a: GTC/OSIRIS spectroscopic redshift confirmation. GRB Coordinates Network 35960, 1 (2024).


Google Scholar
 

Saccardi, A. et al. X-ray transient EP240315a: VLT/X-shooter spectroscopic redshift of z = 4.859. GRB Coordinates Network 35936, 1 (2024).


Google Scholar
 

Wolfe, A. M., Gawiser, E. & Prochaska, J. X. Damped Ly α systems. Annu. Rev. Astron. Astrophys. 43, 861–918 (2005).

ADS 

Google Scholar
 

Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

ADS 

Google Scholar
 

Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199 (2011).

ADS 

Google Scholar
 

Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).

ADS 

Google Scholar
 

Troja, E. et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 612, 228–231 (2022).

ADS 

Google Scholar
 

Yang, Y.-H. et al. A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst. Nature 626, 742–745 (2024).

ADS 

Google Scholar
 

Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).

ADS 

Google Scholar
 

Maguire, K., Eracleous, M., Jonker, P. G., MacLeod, M. & Rosswog, S. Tidal disruptions of white dwarfs: theoretical models and observational prospects. Space Sci. Rev. 216, 39 (2020).

ADS 

Google Scholar
 

Sakamoto, T. et al. High Energy Transient Explorer 2 observations of the extremely soft X-ray flash XRF 020903. Astrophys. J. 602, 875–885 (2004).

ADS 

Google Scholar
 

Quirola-Vásquez, J. et al. New JWST redshifts for the host galaxies of CDF-S XT1 and XT2: understanding their nature. Astron. Astrophys. 695, A279 (2025).


Google Scholar
 

Pescalli, A. et al. Luminosity function and jet structure of gamma-ray burst. Mon. Not. R. Astron. Soc. 447, 1911–1921 (2015).

ADS 

Google Scholar
 

Yadav, M. et al. Radio observations point to a moderately relativistic outflow in the fast X-ray transient EP241021a. Preprint at https://doi.org/10.48550/arXiv.2505.08781 (2025).

Jakobsson, P. et al. A mean redshift of 2.8 for Swift gamma-ray bursts. Astron. Astrophys. 447, 897–903 (2006).

ADS 

Google Scholar
 

Amati, L. et al. The THESEUS space mission: science goals, requirements and mission concept. Exp. Astron. 52, 183–218 (2021).

ADS 

Google Scholar
 

Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).


Google Scholar
 

Chen, Y. et al. X-ray transient EP240315a: EP-FXT detection of the X-ray afterglow. GRB Coordinates Network 35951, 1 (2024).


Google Scholar
 

Carotenuto, F., Bright, J., Jonker, P. G., Fender, R. & Rhodes, L. X-ray transient EP240315a: MeerKAT radio detection. GRB Coordinates Network 35961, 1 (2024).


Google Scholar
 

Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).


Google Scholar
 

Goldoni, P. et al. Data reduction software of the X-shooter spectrograph. In Proc. SPIE Conference Series, Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) Vol. 6269, 62692K (SPIE, 2006).

Modigliani, A. et al. The X-shooter pipeline. In Proc. SPIE Conference Series, Observatory Operations: Strategies, Processes, and Systems III (eds Silva, D. R. et al.) Vol. 7737, 773728 (SPIE, 2010).

Selsing, J. et al. The X-shooter GRB afterglow legacy sample (XS-GRB). Astron. Astrophys. 623, A92 (2019).


Google Scholar
 

Cupani, G. et al. Astrocook: your starred chef for spectral analysis. In Proc. SPIE Conference Series, Software and Cyberinfrastructure for Astronomy VI (eds Guzman, J. C. & Ibsen, J.) Vol. 11452, 114521U (SPIE, 2020).

Vielfaure, J. B. et al. Gamma-ray bursts as probes of high-redshift Lyman-α emitters and radiative transfer models. Astron. Astrophys. 653, A83 (2021).


Google Scholar
 

Krogager, J.-K. VoigtFit: a Python package for Voigt profile fitting. Preprint at https://doi.org/10.48550/arXiv.1803.01187 (2018).

van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).

ADS 

Google Scholar
 

Tody, D. The IRAF data reduction and analysis system. In Proc. SPIE Conference Series, Instrumentation in Astronomy VI (ed. Crawford, D. L.) Vol. 627, 733 (SPIE, 1986).

Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).

ADS 

Google Scholar
 

Seifert, W. et al. LUCIFER: a multi-mode NIR instrument for the LBT. In Proc. SPIE Conference Series, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (eds Iye, M. & Moorwood, A. F. M.) Vol. 4841, 962–973 (SPIE, 2003).

Fontana, A. et al. The Hawk-I UDS and GOODS Survey (HUGS): survey design and deep K-band number counts. Astron. Astrophys. 570, A11 (2014).


Google Scholar
 

Nasa High Energy Astrophysics Science Archive Research Center (Heasarc). HEAsoft: unified release of FTOOLS and XANADU. Astrophysics Source Code Library ascl:1408.004 (2014).

Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

ADS 

Google Scholar
 

Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

ADS 

Google Scholar
 

Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

ADS 

Google Scholar
 

Kraft, R. P., Burrows, D. N. & Nousek, J. A. Determination of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344 (1991).

ADS 

Google Scholar
 

Heise, J., Zand, J. I., Kippen, R. M. & Woods, P. M. X-ray flashes and X-ray rich gamma ray bursts. In Proc. ESO Astrophysics Symposia, Gamma-ray Bursts in the Afterglow Era (eds Costa, E. et al.) 16–21 (Springer, 2001).

D’Alessio, V., Piro, L. & Rossi, E. M. Properties of X-ray rich gamma ray bursts and X-ray flashes detected with BeppoSAX and HETE-2. Astron. Astrophys. 460, 653–664 (2006).

ADS 

Google Scholar
 

Evans, P. A. et al. The Swift Burst Analyser. I. BAT and XRT spectral and flux evolution of gamma ray bursts. Astron. Astrophys. 519, A102 (2010).


Google Scholar
 

Brown, G. C. et al. Swift J1112.2-8238: a candidate relativistic tidal disruption flare. Mon. Not. R. Astron. Soc. 452, 4297–4306 (2015).

ADS 

Google Scholar
 

Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203 (2011).

ADS 

Google Scholar
 

Levan, A. J. et al. Late time multi-wavelength observations of Swift J1644+5734: a luminous optical/IR bump and quiescent X-ray emission. Astrophys. J. 819, 51 (2016).

ADS 

Google Scholar
 

Mangano, V., Burrows, D. N., Sbarufatti, B. & Cannizzo, J. K. The definitive X-ray light curve of Swift J164449.3+573451. Astrophys. J. 817, 103 (2016).

ADS 

Google Scholar
 

Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

ADS 

Google Scholar
 

Pasham, D. R. et al. A multiwavelength study of the relativistic tidal disruption candidate Swift J2058.4+0516 at late times. Astrophys. J. 805, 68 (2015).

ADS 

Google Scholar
 

Andreoni, I. et al. A very luminous jet from the disruption of a star by a massive black hole. Nature 612, 430–434 (2022).

ADS 

Google Scholar
 

Pasham, D. R. et al. The birth of a relativistic jet following the disruption of a star by a cosmological black hole. Nat. Astron. 7, 88–104 (2023).

ADS 

Google Scholar
 

Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

ADS 

Google Scholar
 

Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

ADS 

Google Scholar
 

Schulze, S. et al. GRB 120422A/SN 2012bz: bridging the gap between low- and high-luminosity gamma-ray bursts. Astron. Astrophys. 566, A102 (2014).


Google Scholar
 

Zhang, B.-B., Zhang, B., Murase, K., Connaughton, V. & Briggs, M. S. How long does a burst burst? Astrophys. J. 787, 66 (2014).

ADS 

Google Scholar
 

Ghirlanda, G. & Salvaterra, R. The cosmic history of long gamma-ray bursts. Astrophys. J. 932, 10 (2022).

ADS 

Google Scholar
 

Hjorth, J. et al. The Optically Unbiased Gamma-Ray Burst Host (TOUGH) Survey. I. Survey design and catalogs. Astrophys. J. 756, 187 (2012).

ADS 

Google Scholar
 

Perley, D. A. et al. The Swift GRB host galaxy legacy survey. II. Rest-frame near-IR luminosity distribution and evidence for a near-solar metallicity threshold. Astrophys. J. 817, 8 (2016).

ADS 

Google Scholar
 

Eappachen, D. et al. Probing for the host galaxies of the fast X-ray transients XRT 000519 and XRT 110103. Mon. Not. R. Astron. Soc. 514, 302–312 (2022).

ADS 

Google Scholar
 

Eappachen, D. et al. The fast X-ray transient XRT 210423 and its host galaxy. Astrophys. J. 948, 91 (2023).

ADS 

Google Scholar
 

Dhillon, V. S. et al. HiPERCAM: a quintuple-beam, high-speed optical imager on the 10.4-m Gran Telescopio Canarias. Mon. Not. R. Astron. Soc. 507, 350–366 (2021).

ADS 

Google Scholar