Wang, L. V. & Wu, H. Biomedical Optics: Principles and Imaging. (John Wiley & Sons, 2007).

Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Prim. 1, 68 (2021).

CAS 

Google Scholar
 

Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

CAS 
PubMed 

Google Scholar
 

Zhang, Q. et al. Adaptive optics for optical microscopy. Biomed. Opt. Express 14, 1732–1756 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Papadopoulos, I. N., Jouhanneau, J.-S., Poulet, J. F. & Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics 11, 116–123 (2017).

ADS 
CAS 

Google Scholar
 

Papadopoulos, I. N. et al. Dynamic conjugate F-SHARP microscopy. Light Sci. Appl. 9, 110 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

May, M. A. et al. Fast holographic scattering compensation for deep tissue biological imaging. Nat. Commun. 12, 4340 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qin, Z. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol. 40, 1663–1671 (2022).

CAS 
PubMed 

Google Scholar
 

Aizik, D., Gkioulekas, I. & Levin, A. Fluorescent wavefront shaping using incoherent iterative phase conjugation. Optica 9, 746–754 (2022).

ADS 

Google Scholar
 

Aizik, D. & Levin, A. Non-invasive and noise-robust light focusing using confocal wavefront shaping. Nat. Commun. 15, 5575 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yoon, S., Lee, H., Hong, J. H., Lim, Y.-S. & Choi, W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat. Commun. 11, 5721 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, Y.-R., Kim, D.-Y., Jo, Y., Kim, M. & Choi, W. Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium. Nat. Commun. 14, 1878 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).

Balondrade, P. et al. Multi-spectral reflection matrix for ultrafast 3D label-free microscopy. Nat. Photonics 18, 1097–1104 (2024).

CAS 

Google Scholar
 

Murray, G. et al. Aberration free synthetic aperture second harmonic generation holography. Opt. Express 31, 32434–32457 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, L. et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun. 13, 1447 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. 109, 8434–8439 (2012).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

ADS 
CAS 
PubMed 

Google Scholar
 

Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 6, 549–553 (2012).

ADS 
CAS 

Google Scholar
 

Yeminy, T. & Katz, O. Guidestar-free image-guided wavefront shaping. Sci. Adv. 7, eabf5364 (2021).

Feng, B. Y. et al. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv. 9, eadg4671 (2023).

Haim, O., Boger-Lombard, J. & Katz, O. Image-guided computational holographic wavefront shaping. Nat. Photonics 19, 44–53 (2025).

CAS 

Google Scholar
 

Shen, Y., Liu, Y., Ma, C. & Wang, L. V. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. J. Biomed. Opt. 21, 085001–085001 (2016).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

ADS 
CAS 
PubMed 

Google Scholar
 

Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Cheng, Z., Li, C., Khadria, A., Zhang, Y. & Wang, L. V. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics 17, 299–305 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vellekoop, I. M. & Mosk, A. P. Universal Optimal Transmission of Light Through Disordered Materials. Phys. Rev. Lett. 101, 120601 (2008).

ADS 
CAS 
PubMed 

Google Scholar
 

Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5, 154–157 (2011).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat. Commun. 3, 928 (2012).

ADS 
PubMed 

Google Scholar
 

Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photonics 7, 300–305 (2013).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng, Z. & Wang, L. V. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci. Appl. 10, 159 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, C., Xu, X. & Wang, L. V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000\times optical power gain. Sci. Rep. 5, 8896 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. J. Biomed. Opt. 23, 010501–010501 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Suzuki, Y., Tay, J. W., Yang, Q. & Wang, L. V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. Opt. Lett. 39, 3441–3444 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ruan, H. et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4, 1337–1343 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, J. et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Sci. Adv. 5, eaay1211 (2019).

Ruan, H., Jang, M. & Yang, C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nat. Commun. 6, 8968 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Vellekoop, I. M., Van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

ADS 
CAS 
PubMed 

Google Scholar
 

Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015).

CAS 

Google Scholar
 

Freund, I., Rosenbluh, M. & Feng, S. Memory Effects in Propagation of Optical Waves through Disordered Media. Phys. Rev. Lett. 61, 2328–2331 (1988).

ADS 
CAS 
PubMed 

Google Scholar
 

Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

ADS 

Google Scholar
 

Kubby, J., Gigan, S. & Cui, M. Wavefront Shaping for Biomedical Imaging. (Cambridge University Press, 2019).

Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photonics 8, 931–936 (2014).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Keyes, R. W. Nonlinear absorbers of light. IBM J. Res. Dev. 7, 334–336 (1963).


Google Scholar
 

Silberberg, Y. & Bar-Joseph, I. Transient effects in degenerate four-wave mixing in saturable absorbers. IEEE J. Quantum Electron 17, 1967–1970 (1981).

ADS 

Google Scholar
 

Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).

McIntosh, R. et al. Delivering broadband light deep inside diffusive media. Nat. Photonics 18, 744–750 (2024).

CAS 

Google Scholar
 

Horisaki, R., Okamoto, Y. & Tanida, J. Single-shot noninvasive three-dimensional imaging through scattering media. Opt. Lett. 44, 4032–4035 (2019).

ADS 
PubMed 

Google Scholar
 

Aarav, S. & Fleischer, J. W. Using speckle correlations for single-shot 3D imaging. Appl. Opt. 62, D181–D186 (2023).

PubMed 

Google Scholar
 

Aarav, S. & Fleischer, J. W. Depth-resolved speckle correlation imaging using the axial memory effect. Opt. Express 32, 23750–23757 (2024).

PubMed 

Google Scholar
 

Packer, A. M., Roska, B. & Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805–815 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sharman, W. M., van Lier, J. E. & Allen, C. M. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev. 56, 53–76 (2004).

CAS 
PubMed 

Google Scholar
 

Wang, X. et al. The development of site-specific drug delivery nanocarriers based on receptor mediation. J. Controlled Release 193, 139–153 (2014).

CAS 

Google Scholar
 

Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006).

CAS 
PubMed 

Google Scholar
 

Algorri, J. F., Ochoa, M., Roldan-Varona, P., Rodriguez-Cobo, L. & López-Higuera, J. M. Light technology for efficient and effective photodynamic therapy: a critical review. Cancers 13, 3484 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

CAS 
PubMed 

Google Scholar
 

Takemura, T., Ohta, N., Nakajima, S. & Sakata, I. Critical importance of the triplet lifetime of photosensitizer in photodynamic therapy of tumor. Photochem. Photobiol. 50, 339–344 (1989).

CAS 
PubMed 

Google Scholar
 

Ippen, E. P. Principles of passive mode locking. Appl. Phys. B Laser Opt. 58, 159–170 (1994).

ADS 

Google Scholar
 

Woo, C. M. et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping. APL Photonics 7, 046109 (2022).

Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 9, 126–132 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tay, J. W., Lai, P., Suzuki, Y. & Wang, L. V. Ultrasonically encoded wavefront shaping for focusing into random media. Sci. Rep. 4, 3918 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, D. et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica 2, 728–735 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y., Ma, C., Shen, Y., Shi, J. & Wang, L. V. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica 4, 280–288 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hemphill, A. S., Shen, Y., Liu, Y. & Wang, L. V. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. Appl. Phys. Lett. 111, 221109 (2017).

Luo, J. et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. Sci. Adv. 8, eadd9158 (2022).