Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Phys. Rev. Lett. 112, 047601 (2014).
Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).
Bhattacharyya, P. et al. Imaging the meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).
Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed nv centers. Science 366, 1359–1362 (2019).
Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).
Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in a diamond anvil cell. Nat. Commun. 15, 8843 (2024).
Steele, L. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).
Shang, Y.-X. et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins. Chin. Phys. Lett. 36, 086201 (2019).
Hamlin, J. J. & Zhou, B. B. Extreme diamond-based quantum sensors. Science 366, 1312–1313 (2019).
Shelton, D. P., Cabriales, W. & Salamat, A. Magnetometry in a diamond anvil cell using nitrogen vacancy centers in a nanodiamond ensemble. Rev. Sci. Instrum. 95, 083901 (2024).
Ho, K. O. et al. Probing local pressure environment in anvil cells with nitrogen-vacancy (n-v-) centers in diamond. Phys. Rev. Appl. 13, 024041 (2020).
Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers under megabar pressures. Chin. Phys. Lett. 39, 117601 (2022).
Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).
Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).
Wen, J. et al. Imaging the Meissner effect in pressurized bilayer nickelate with integrated multi-parameter quantum sensor. National Science Review, nwaf268 (Oxford University Press, 2025)
Wang, Z. et al. Ac sensing using nitrogen-vacancy centers in a diamond anvil cell up to 6 GPa. Phys. Rev. Appl. 16, 054014 (2021).
Vaidya, S., Gao, X., Dikshit, S., Aharonovich, I. & Li, T. Quantum sensing and imaging with spin defects in hexagonal boron nitride. Adv. Phys.: X 8, 2206049 (2023).
Azzam, S. I., Parto, K. & Moody, G. Prospects and challenges of quantum emitters in 2d materials. Appl. Phys. Lett. 118, 240502 (2021).
Ren, S., Tan, Q. & Zhang, J. Review on the quantum emitters in two-dimensional materials. J. Semicond. 40, 071903 (2019).
Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).
Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).
Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).
Aharonovich, I., Tetienne, J.-P. & Toth, M. Quantum emitters in hexagonal boron nitride. Nano Lett. 22, 9227–9235 (2022).
Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).
Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).
Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).
Naclerio, A. E. & Kidambi, P. R. A review of scalable hexagonal boron nitride (h-bn) synthesis for present and future applications. Adv. Mater. 35, 2207374 (2023).
Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Li, S., Thiering, G., Udvarhelyi, P., Ivády, V. & Gali, A. Carbon defect qubit in two-dimensional ws2. Nat. Commun. 13, 1210 (2022).
Gao, X. et al. Nanotube spin defects for omnidirectional magnetic field sensing. Nat. Commun. 15, 7697 (2024).
Kumar, P. et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys. Rev. Appl. 18, L061002 (2022).
Das, S. et al. Quantum sensing of spin dynamics using boron-vacancy centers in hexagonal boron nitride. Phys. Rev. Lett. 133, 166704 (2024).
Lyu, X. et al. Strain quantum sensing with spin defects in hexagonal boron nitride. Nano Lett. 22, 6553–6559 (2022).
Zabelotsky, T. et al. Creation of boron vacancies in hexagonal boron nitride exfoliated from bulk crystals for quantum sensing. ACS Appl. Nano Mater. 6, 21671–21678 (2023).
Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).
Huang, Y. L., Chen, W. & Wee, A. T. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2, 139–153 (2021).
Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).
Udvarhelyi, P. et al. A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields. npj Comput. Mater. 9, 150 (2023).
Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).
Celeste, A., Borondics, F. & Capitani, F. Hydrostaticity of pressure-transmitting media for high-pressure infrared spectroscopy. High. Press. Res. 39, 608–618 (2019).
You, S., Chen, L. & Jin, C. Hydrostaticity of pressure media in diamond anvil cells. Chin. Phys. Lett. 26, 204–206 (2009).
Tateiwa, N. & Haga, Y. Appropriate pressure-transmitting media for cryogenic experiment in the diamond anvil cell up to 10 GPa. In Journal of Physics: Conference Series, vol. 215, 012178 (IOP Publishing, 2010).
Gong, R. et al. Isotope engineering for spin defects in van der Waals materials. Nat. Commun. 15, 104 (2024).
Clua-Provost, T. et al. Isotopic control of the boron-vacancy spin defect in hexagonal boron nitride. Phys. Rev. Lett. 131, 126901 (2023).
Janzen, E. et al. Boron and nitrogen isotope effects on hexagonal boron nitride properties. Adv. Mater. 36, 2306033 (2024).
Sasaki, K., Taniguchi, T. & Kobayashi, K. Nitrogen isotope effects on boron vacancy quantum sensors in hexagonal boron nitride. Appl. Phys. Express 16, 095003 (2023).
Sterer, E., Pasternak, M. & Taylor, R. A multipurpose miniature diamond anvil cell. Rev. Sci. Instrum. 61, 1117–1119 (1990).
Plo, J. et al. Isotope substitution and polytype control for point defects identification: the case of the ultraviolet color center in hexagonal boron nitride. Phys. Rev. X 15, 021045 (2025).
Klotz, S., Chervin, J., Munsch, P. & Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D: Appl. Phys. 42, 075413 (2009).
Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. & Jacobsen, S. D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26–32 (2007).
Takemura, K. Hydrostaticity in high-pressure experiments: some general observations and guidelines for high-pressure experimenters. High. Press. Res. 41, 155–174 (2021).
Barson, M. S. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).
Han, B. et al. Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide. J. Phys. Chem. Lett. 8, 941–947 (2017).
Proctor, J. E. et al. High-pressure Raman spectroscopy of graphene. Phys. Rev. B—Condens. Matter Mater. Phys. 80, 073408 (2009).
Pei, S., Wang, Z. & Xia, J. High-pressure studies of 2d materials and heterostructures: a review. Mater. Des. 213, 110363 (2022).
Liu, Z. et al. Temperature-dependent spin-phonon coupling of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 111, 024108 (2025).
Melendez, A. L. et al. Nanoscale quantum imaging of spin dynamics using a hybrid 2d/3d system. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.09432 (2025).
Sun, H. et al. Room-temperature hybrid 2d-3d quantum spin system for enhanced magnetic sensing and many-body dynamics. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.10815 (2025).
Yang, T. et al. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale 14, 5239–5244 (2022).
Curie, D. et al. Correlative nanoscale imaging of strained hBN spin defects. ACS Appl. Mater. Interfaces 14, 41361–41368 (2022).
Lee, W. et al. Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride. Phys. Rev. Lett. 134, 096202 (2025).
Clua-Provost, T. et al. Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 110, 014104 (2024).
Qian, C. et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission. Nano Lett. 22, 5137–5142 (2022).
Fröch, J. E. et al. Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 21, 6549–6555 (2021).
Nonahal, M. et al. Coupling spin defects in hexagonal boron nitride to titanium dioxide ring resonators. Nanoscale 14, 14950–14955 (2022).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2d materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Jiang, X. et al. Recent progress on 2d magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews8 (2021).
Wang, Q. H. et al. The magnetic genome of two-dimensional van der Waals materials. ACS nano 16, 6960–7079 (2022).
Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
Conner, C. et al. Enhanced antiferromagnetic phase in metastable self-intercalated cr1+xTe2 compounds. Preprint at arXiv https://doi.org/10.48550/arXiv.2411.13721 (2024).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
Coughlin, A. L. et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano 14, 15256–15266 (2020).
Coughlin, A. L. et al. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett. 21, 9517–9525 (2021).
Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator cr 2 Ge 2 Te 6. Phys. Rev. Mater. 2, 051004 (2018).
Sun, Y. et al. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Applied Physics Letters 112, 072409 (2018).
Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).
Ren, X. et al. Possible strain-induced enhancement of the superconducting onset transition temperature in infinite-layer nickelates. Commun. Phys. 6, 341 (2023).
Mu, Z. et al. Magnetic imaging under high pressure with a spin-based quantum sensor integrated in a van der Waals heterostructure. Preprint at arXiv https://doi.org/10.48550/arXiv.2501.03640 (2025).
Coughlin, A. L. et al. Extreme air sensitivity and nonself-limited oxidation of two-dimensional magnetic tellurides. ACS Mater. Lett. 5, 1945–1953 (2023).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. b 59, 1758 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys.: Condens. Matter 9, 767 (1997).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).
Liu, Y., Kwon, S., de Coster, G. J., Lake, R. K. & Neupane, M. R. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater. 6, 084004 (2022).