Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Phys. Rev. Lett. 112, 047601 (2014).

ADS 
PubMed 

Google Scholar
 

Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

ADS 
PubMed 

Google Scholar
 

Bhattacharyya, P. et al. Imaging the meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).

ADS 
PubMed 

Google Scholar
 

Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed nv centers. Science 366, 1359–1362 (2019).

ADS 
PubMed 

Google Scholar
 

Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

ADS 
PubMed 

Google Scholar
 

Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in a diamond anvil cell. Nat. Commun. 15, 8843 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Steele, L. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).

ADS 

Google Scholar
 

Shang, Y.-X. et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins. Chin. Phys. Lett. 36, 086201 (2019).

ADS 

Google Scholar
 

Hamlin, J. J. & Zhou, B. B. Extreme diamond-based quantum sensors. Science 366, 1312–1313 (2019).

ADS 
PubMed 

Google Scholar
 

Shelton, D. P., Cabriales, W. & Salamat, A. Magnetometry in a diamond anvil cell using nitrogen vacancy centers in a nanodiamond ensemble. Rev. Sci. Instrum. 95, 083901 (2024).

PubMed 

Google Scholar
 

Ho, K. O. et al. Probing local pressure environment in anvil cells with nitrogen-vacancy (n-v-) centers in diamond. Phys. Rev. Appl. 13, 024041 (2020).

ADS 

Google Scholar
 

Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers under megabar pressures. Chin. Phys. Lett. 39, 117601 (2022).

ADS 

Google Scholar
 

Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).


Google Scholar
 

Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

ADS 

Google Scholar
 

Wen, J. et al. Imaging the Meissner effect in pressurized bilayer nickelate with integrated multi-parameter quantum sensor. National Science Review, nwaf268 (Oxford University Press, 2025)

Wang, Z. et al. Ac sensing using nitrogen-vacancy centers in a diamond anvil cell up to 6 GPa. Phys. Rev. Appl. 16, 054014 (2021).

ADS 

Google Scholar
 

Vaidya, S., Gao, X., Dikshit, S., Aharonovich, I. & Li, T. Quantum sensing and imaging with spin defects in hexagonal boron nitride. Adv. Phys.: X 8, 2206049 (2023).


Google Scholar
 

Azzam, S. I., Parto, K. & Moody, G. Prospects and challenges of quantum emitters in 2d materials. Appl. Phys. Lett. 118, 240502 (2021).

ADS 

Google Scholar
 

Ren, S., Tan, Q. & Zhang, J. Review on the quantum emitters in two-dimensional materials. J. Semicond. 40, 071903 (2019).

ADS 

Google Scholar
 

Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).

ADS 
PubMed 

Google Scholar
 

Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).


Google Scholar
 

Aharonovich, I., Tetienne, J.-P. & Toth, M. Quantum emitters in hexagonal boron nitride. Nano Lett. 22, 9227–9235 (2022).

ADS 
PubMed 

Google Scholar
 

Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

ADS 
PubMed 

Google Scholar
 

Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Naclerio, A. E. & Kidambi, P. R. A review of scalable hexagonal boron nitride (h-bn) synthesis for present and future applications. Adv. Mater. 35, 2207374 (2023).


Google Scholar
 

Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).

ADS 
PubMed 

Google Scholar
 

Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Li, S., Thiering, G., Udvarhelyi, P., Ivády, V. & Gali, A. Carbon defect qubit in two-dimensional ws2. Nat. Commun. 13, 1210 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, X. et al. Nanotube spin defects for omnidirectional magnetic field sensing. Nat. Commun. 15, 7697 (2024).

Kumar, P. et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys. Rev. Appl. 18, L061002 (2022).

ADS 

Google Scholar
 

Das, S. et al. Quantum sensing of spin dynamics using boron-vacancy centers in hexagonal boron nitride. Phys. Rev. Lett. 133, 166704 (2024).

PubMed 

Google Scholar
 

Lyu, X. et al. Strain quantum sensing with spin defects in hexagonal boron nitride. Nano Lett. 22, 6553–6559 (2022).

ADS 
PubMed 

Google Scholar
 

Zabelotsky, T. et al. Creation of boron vacancies in hexagonal boron nitride exfoliated from bulk crystals for quantum sensing. ACS Appl. Nano Mater. 6, 21671–21678 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).

ADS 
PubMed 

Google Scholar
 

Huang, Y. L., Chen, W. & Wee, A. T. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2, 139–153 (2021).


Google Scholar
 

Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Udvarhelyi, P. et al. A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields. npj Comput. Mater. 9, 150 (2023).

ADS 

Google Scholar
 

Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Celeste, A., Borondics, F. & Capitani, F. Hydrostaticity of pressure-transmitting media for high-pressure infrared spectroscopy. High. Press. Res. 39, 608–618 (2019).

ADS 

Google Scholar
 

You, S., Chen, L. & Jin, C. Hydrostaticity of pressure media in diamond anvil cells. Chin. Phys. Lett. 26, 204–206 (2009).


Google Scholar
 

Tateiwa, N. & Haga, Y. Appropriate pressure-transmitting media for cryogenic experiment in the diamond anvil cell up to 10 GPa. In Journal of Physics: Conference Series, vol. 215, 012178 (IOP Publishing, 2010).

Gong, R. et al. Isotope engineering for spin defects in van der Waals materials. Nat. Commun. 15, 104 (2024).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Clua-Provost, T. et al. Isotopic control of the boron-vacancy spin defect in hexagonal boron nitride. Phys. Rev. Lett. 131, 126901 (2023).

ADS 
PubMed 

Google Scholar
 

Janzen, E. et al. Boron and nitrogen isotope effects on hexagonal boron nitride properties. Adv. Mater. 36, 2306033 (2024).


Google Scholar
 

Sasaki, K., Taniguchi, T. & Kobayashi, K. Nitrogen isotope effects on boron vacancy quantum sensors in hexagonal boron nitride. Appl. Phys. Express 16, 095003 (2023).

ADS 

Google Scholar
 

Sterer, E., Pasternak, M. & Taylor, R. A multipurpose miniature diamond anvil cell. Rev. Sci. Instrum. 61, 1117–1119 (1990).

ADS 

Google Scholar
 

Plo, J. et al. Isotope substitution and polytype control for point defects identification: the case of the ultraviolet color center in hexagonal boron nitride. Phys. Rev. X 15, 021045 (2025).

Klotz, S., Chervin, J., Munsch, P. & Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D: Appl. Phys. 42, 075413 (2009).

ADS 

Google Scholar
 

Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. & Jacobsen, S. D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26–32 (2007).

ADS 

Google Scholar
 

Takemura, K. Hydrostaticity in high-pressure experiments: some general observations and guidelines for high-pressure experimenters. High. Press. Res. 41, 155–174 (2021).

ADS 

Google Scholar
 

Barson, M. S. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

ADS 
PubMed 

Google Scholar
 

Han, B. et al. Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide. J. Phys. Chem. Lett. 8, 941–947 (2017).

PubMed 

Google Scholar
 

Proctor, J. E. et al. High-pressure Raman spectroscopy of graphene. Phys. Rev. B—Condens. Matter Mater. Phys. 80, 073408 (2009).

ADS 

Google Scholar
 

Pei, S., Wang, Z. & Xia, J. High-pressure studies of 2d materials and heterostructures: a review. Mater. Des. 213, 110363 (2022).


Google Scholar
 

Liu, Z. et al. Temperature-dependent spin-phonon coupling of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 111, 024108 (2025).


Google Scholar
 

Melendez, A. L. et al. Nanoscale quantum imaging of spin dynamics using a hybrid 2d/3d system. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.09432 (2025).

Sun, H. et al. Room-temperature hybrid 2d-3d quantum spin system for enhanced magnetic sensing and many-body dynamics. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.10815 (2025).

Yang, T. et al. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale 14, 5239–5244 (2022).

PubMed 

Google Scholar
 

Curie, D. et al. Correlative nanoscale imaging of strained hBN spin defects. ACS Appl. Mater. Interfaces 14, 41361–41368 (2022).

PubMed 

Google Scholar
 

Lee, W. et al. Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride. Phys. Rev. Lett. 134, 096202 (2025).

Clua-Provost, T. et al. Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 110, 014104 (2024).


Google Scholar
 

Qian, C. et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission. Nano Lett. 22, 5137–5142 (2022).

ADS 
PubMed 

Google Scholar
 

Fröch, J. E. et al. Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 21, 6549–6555 (2021).

ADS 
PubMed 

Google Scholar
 

Nonahal, M. et al. Coupling spin defects in hexagonal boron nitride to titanium dioxide ring resonators. Nanoscale 14, 14950–14955 (2022).

PubMed 

Google Scholar
 

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

PubMed 

Google Scholar
 

Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2d materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

ADS 
PubMed 

Google Scholar
 

Jiang, X. et al. Recent progress on 2d magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews8 (2021).

Wang, Q. H. et al. The magnetic genome of two-dimensional van der Waals materials. ACS nano 16, 6960–7079 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

ADS 
PubMed 

Google Scholar
 

Conner, C. et al. Enhanced antiferromagnetic phase in metastable self-intercalated cr1+xTe2 compounds. Preprint at arXiv https://doi.org/10.48550/arXiv.2411.13721 (2024).

Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

ADS 
PubMed 

Google Scholar
 

Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

ADS 
PubMed 

Google Scholar
 

Coughlin, A. L. et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano 14, 15256–15266 (2020).

PubMed 

Google Scholar
 

Coughlin, A. L. et al. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett. 21, 9517–9525 (2021).

ADS 
PubMed 

Google Scholar
 

Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator cr 2 Ge 2 Te 6. Phys. Rev. Mater. 2, 051004 (2018).

ADS 

Google Scholar
 

Sun, Y. et al. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Applied Physics Letters 112, 072409 (2018).

Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).

PubMed 

Google Scholar
 

Ren, X. et al. Possible strain-induced enhancement of the superconducting onset transition temperature in infinite-layer nickelates. Commun. Phys. 6, 341 (2023).


Google Scholar
 

Mu, Z. et al. Magnetic imaging under high pressure with a spin-based quantum sensor integrated in a van der Waals heterostructure. Preprint at arXiv https://doi.org/10.48550/arXiv.2501.03640 (2025).

Coughlin, A. L. et al. Extreme air sensitivity and nonself-limited oxidation of two-dimensional magnetic tellurides. ACS Mater. Lett. 5, 1945–1953 (2023).


Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

ADS 

Google Scholar
 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. b 59, 1758 (1999).

ADS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

ADS 
PubMed 

Google Scholar
 

Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys.: Condens. Matter 9, 767 (1997).

ADS 

Google Scholar
 

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).

ADS 

Google Scholar
 

Liu, Y., Kwon, S., de Coster, G. J., Lake, R. K. & Neupane, M. R. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater. 6, 084004 (2022).


Google Scholar
Â