Ullah, S., Aldossary, A., Ullah, W. & Al-Ghamdi, S. G. Augmented human thermal discomfort in urban centers of the Arabian Peninsula. Sci. Rep. 14, 3974 (2024).


Google Scholar
 

Velázquez, J. et al. Walkability under climate pressure: application to three UNESCO World Heritage cities in Central Spain. Land 12, 944 (2023).


Google Scholar
 

Tahir, F., Dieng, F. N. & Al‐Ghamdi, S. G. in Sustainable Cities in a Changing Climate: Enhancing Urban Resilience (ed. Al-Ghamdi, S. G.) 251–262 (Wiley, 2023).

Koetse, M. J. & Rietveld, P. The impact of climate change and weather on transport: an overview of empirical findings. Transp. Res. D Transp. Environ. 14, 205–221 (2009).


Google Scholar
 

Elhamy Kamel, M. A. Encouraging walkability in GCC cities: smart urban solutions. Smart Sustain. Built Environ. 2, 288–310 (2013).


Google Scholar
 

Takacs, T., Pearce, S. & Kristjansson, E. Adaptation of the neighbourhood environment walkability scale for use in northern climates: the NEWS-North (breakout presentation). J. Transp. Health 7, S69–S70 (2017).


Google Scholar
 

Galal, L. A. & El Hady, N. Assessing walkability to mitigate climate change and empower women in a vulnerable coastal settlement. Environ. Ecol. Res. 11, 697–711 (2023).


Google Scholar
 

Zuniga-Teran, A. in Climate Change-Sensitive Cities: Building Capacities for Urban Resilience, Sustainability, and Equity (ed. Delgado Ramos, G. C.) 163–179 (Research Program on Climate Change of the National Autonomous University of Mexico, 2017).

Kim, M. J. & Michael Hall, C. Is tourist walkability and well-being different? Curr. Issues Tourism 26, 171–176 (2023).


Google Scholar
 

Hall, C. M. & Ram, Y. Weather and climate in the assessment of tourism-related walkability. Int. J. Biometeorol. 65, 729–739 (2021).


Google Scholar
 

Asiamah, N. in Sustainable Urbanism in Developing Countries (eds Chatterjee, U. et al.) Ch. 13 (CRC Press, 2022).

Dovey, K. & Pafka, E. What is walkability? The urban DMA. Urban Stud. 57, 93–108 (2020).


Google Scholar
 

Bereitschaft, B. Neighborhood walkability and housing affordability among U.S. urban areas. Urban Sci. 3, 11 (2019).


Google Scholar
 

Tobin, M. et al. Rethinking walkability and developing a conceptual definition of active living environments to guide research and practice. BMC Public Health 22, 450 (2022).


Google Scholar
 

Rohana, R., Ardi, M., Ali Muh., I. & Hamkah, H. The application of the concept walkability in the city of Makassar in terms of behavioral aspects. In Proc. 1st World Conference on Social and Humanities Research (W-SHARE 2021) Vol. 654 (eds Djawad, Y. A. & Hasim, A. H.) https://doi.org/10.2991/assehr.k.220402.026 (Atlantis Press, 2022).

Knapskog, M., Hagen, O. H., Tennøy, A. & Rynning, M. K. Exploring ways of measuring walkability. Transp. Res. Proc. 41, 264–282 (2019).


Google Scholar
 

Forsyth, A. What is a walkable place? The walkability debate in urban design. Urban Des. Int. 20, 274–292 (2015).


Google Scholar
 

Makram, O. M. et al. Favorable neighborhood walkability is associated with lower burden of cardiovascular risk factors among patients within an integrated health system: the Houston Methodist Learning Health System Outpatient Registry. Curr. Probl. Cardiol. 48, 101642 (2023).


Google Scholar
 

Wu, Y. et al. Association of walkability and fine particulate matter with chronic obstructive pulmonary disease: a cohort study in China. Sci. Total Environ. 858, 159780 (2023).


Google Scholar
 

Okabe, D. et al. Neighborhood walkability in relation to knee and low back pain in older people: a multilevel cross-sectional study from the JAGES. Int. J. Environ. Res. Public Health 16, 4598 (2019).


Google Scholar
 

Sundquist, K., Eriksson, U., Mezuk, B. & Ohlsson, H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place 31, 24–30 (2015).


Google Scholar
 

Rundle, A. et al. Neighborhood food environment and walkability predict obesity in New York City. Environ. Health Perspect. 117, 442–447 (2009).


Google Scholar
 

Berke, E. M., Gottlieb, L. M., Moudon, A. V. & Larson, E. B. Protective association between neighborhood walkability and depression in older men. J. Am. Geriatr. Soc. 55, 526–533 (2007).


Google Scholar
 

Forsyth, A. & Southworth, M. Cities afoot—pedestrians, walkability and urban design. J. Urban Des. 13, 1–3 (2008).


Google Scholar
 

Akkar Ercan, M. & Belge, Z. S. Measuring walkability for more liveable and sustainable cities. Ekistics New Habitat 80, 50–67 (2021).


Google Scholar
 

Rafiemanzelat, R., Emadi, M. I. & Kamali, A. J. City sustainability: the influence of walkability on built environments. Transp. Res. Proc. 24, 97–104 (2017).


Google Scholar
 

Wang, H. & Yang, Y. Neighbourhood walkability: a review and bibliometric analysis. Cities 93, 43–61 (2019).


Google Scholar
 

Rundle, A. G. et al. Using GPS data to study neighborhood walkability and physical activity. Am. J. Prev. Med. 50, e65–e72 (2016).


Google Scholar
 

Middleton, J. The socialities of everyday urban walking and the ‘right to the city’. Urban Stud. 55, 296–315 (2018).


Google Scholar
 

Bamwesigye, D. & Hlavackova, P. Analysis of sustainable transport for smart cities. Sustainability 11, 2140 (2019).


Google Scholar
 

Marshall, J. D., Brauer, M. & Frank, L. D. Healthy neighborhoods: walkability and air pollution. Environ. Health Perspect. 117, 1752–1759 (2009).


Google Scholar
 

Yu, P. et al. Embedding of spatial equity in a rapidly urbanising area: walkability and air pollution exposure. Cities 131, 103942 (2022).


Google Scholar
 

Newbery, D. M. Road damage externalities and road user charges. Econometrica 56, 295–316 (1988).


Google Scholar
 

Hao, Z., Singh, V. & Hao, F. Compound extremes in hydroclimatology: a review. Water 10, 718 (2018).


Google Scholar
 

Telesca, V., Lay-Ekuakille, A., Ragosta, M., Giorgio, G. & Lumpungu, B. Effects on public health of heat waves to improve the urban quality of life. Sustainability 10, 1082 (2018).


Google Scholar
 

Mohammadi, S., De Angeli, S., Boni, G., Pirlone, F. & Cattari, S. Review article: current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards. Nat. Hazards Earth Syst. Sci. 24, 79–107 (2024).

Sun, J. et al. Assessment of urban resilience and subsystem coupling coordination in the Beijing–Tianjin–Hebei urban agglomeration. Sustain. Cities Soc. 100, 105058 (2024).


Google Scholar
 

Ebi, K. L. & Schmier, J. K. A stitch in time: improving public health early warning systems for extreme weather events. Epidemiol. Rev. 27, 115–121 (2005).


Google Scholar
 

Abuwaer, N., Ullah, S. & Al‐Ghamdi, S. G. in Sustainable Cities in a Changing Climate: Enhancing Urban Resilience (ed. Al-Ghamdi, S. G.) 185–206 (Wiley, 2023).

Abayechaw, D. The main natural sources of global climate variability occurring even before the Industrial Era. OAJRC Environ. Sci. 3, 10–22 (2023).


Google Scholar
 

Singh, R. L. & Singh, P. K. in Principles and Applications of Environmental Biotechnology for a Sustainable Future (ed. Singh, R. L.) 13–41 (Springer, 2017).

Du Plessis, A. Water as an Inescapable Risk (Springer, 2019).

Twine, T., Snyder, P. K., Hertel, W. & Mykleby, P. The urban heat island behavior of a large northern latitude metropolitan area. Semantic Scholar https://www.semanticscholar.org/paper/The-Urban-Heat-Island-Behavior-of-a-Large-Northern-Twine-Snyder/760ae19fcebb38cfb97550077512fb5897ce0d8a (2012).

Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M. & Morgan, E. A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 171, 1140–1149 (2018).


Google Scholar
 

Phelan, P. E. et al. Urban heat island: mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour. 40, 285–307 (2015).


Google Scholar
 

Gössling, S., Neger, C., Steiger, R. & Bell, R. Weather, climate change, and transport: a review. Nat. Hazards 118, 1341–1360 (2023).


Google Scholar
 

Ganguly, A. R. & Steinhaeuser, K. Data mining for climate change and impacts. In Proc. 2008 IEEE International Conference on Data Mining Workshops (eds Bonchi, F. et al.) 385–394 (IEEE, 2008).

Ahmadalipour, A. & Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 117, 215–225 (2018).


Google Scholar
 

Ullah, S. et al. Future population exposure to daytime and nighttime heat waves in South Asia. Earths Future 10, e2021EF002511 (2022).


Google Scholar
 

Peng, Z., Bardhan, R., Ellard, C. & Steemers, K. Urban climate walk: a stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Build. Environ. 221, 109267 (2022).


Google Scholar
 

Wang, Y. et al. Assessment of walkability and walkable routes of a 15-min city for heat adaptation: development of a dynamic attenuation model of heat stress. Front. Public Health 10, 1011391 (2022).


Google Scholar
 

Lee, L. S. H., Cheung, P. K., Fung, C. K. W. & Jim, C. Y. Improving street walkability: biometeorological assessment of artificial-partial shade structures in summer sunny conditions. Int. J. Biometeorol. 64, 547–560 (2020).


Google Scholar
 

Jia, S. & Wang, Y. Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: a case study in Hong Kong. Build. Environ. 201, 107988 (2021).


Google Scholar
 

Dzyuban, Y. et al. Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Sci. Total Environ. 834, 155294 (2022).


Google Scholar
 

Labdaoui, K., Mazouz, S., Moeinaddini, M., Cools, M. & Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): a new assessment tool combining street design measurements and thermal comfort. Sci. Total Environ. 795, 148663 (2021).

Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 34, 661–665 (2002).


Google Scholar
 

Jeong, M.-A., Park, S. & Song, G.-S. Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban For. Urban Green. 15, 133–148 (2016).


Google Scholar
 

Lai, D. et al. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 742, 140092 (2020).


Google Scholar
 

Liu, J., Yao, R. & McCloy, R. A method to weight three categories of adaptive thermal comfort. Energy Build. 47, 312–320 (2012).


Google Scholar
 

Ullah, S. et al. Characteristics of human thermal stress in South Asia during 1981–2019. Environ. Res. Lett.17, 104018 (2022).


Google Scholar
 

Bröde, P., Krüger, E. L. & Rossi, F. A. Assessment of urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI. In Proc. 14th International Conference on Environmental Ergonomics (eds Kounalakis, S. & Koskolou, M.) 338–341 (National and Kapodestrian University of Athens, 2011).

Égerházi, L., Kántor, N. & Gulyás, Á. Investigation of human thermal comfort by observing the utilization of open-air terraces in catering places—a case study in Szeged. Acta Climatol. Chorol. 42–43, 29–37 (2009).


Google Scholar
 

Nikolopoulou, M. & Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 35, 95–101 (2003).


Google Scholar
 

Walther, E., Mishra, A. K. & Forcadell, V. Influence of physiological variability on thermal comfort: a numerical evaluation. In Proc. 16th International Building Performance Simulation Association Conference (eds Corrado, V. et al.) 2465–2472 (IBPSA, 2019).

Litman, T. Cool walkability planning: providing pedestrian thermal comfort in hot climate cities. J. Civ. Eng. Environ. Sci. 9, 79–86 (2023).


Google Scholar
 

Watanabe, S., Nagano, K., Ishii, J. & Horikoshi, T. Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Build. Environ. 82, 556–565 (2014).


Google Scholar
 

Middel, A., Selover, N., Hagen, B. & Chhetri, N. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 60, 1849–1861 (2016).


Google Scholar
 

Lai, D., Liu, W., Gan, T., Liu, K. & Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661, 337–353 (2019).


Google Scholar
 

Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build. Environ. 41, 1326–1338 (2006).


Google Scholar
 

Krayenhoff, E. S. et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ. Res. Lett. 16, 053007 (2021).


Google Scholar
 

Larsen, L. Urban climate and adaptation strategies. Front. Ecol. Environ. 13, 486–492 (2015).


Google Scholar
 

Taleghani, M., Sailor, D. & Ban-Weiss, G. A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 11, 024003 (2016).


Google Scholar
 

Azmeer, A., Tahir, F. & Al-Ghamdi, S. G. Progress on green infrastructure for urban cooling: evaluating techniques, design strategies, and benefits. Urban Clim. 56, 102077 (2024).


Google Scholar
 

Zölch, T., Maderspacher, J., Wamsler, C. & Pauleit, S. Using green infrastructure for urban climate-proofing: an evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 20, 305–316 (2016).


Google Scholar
 

Aram, F., Solgi, E., Garcia, E. H. & Mosavi, A. Urban heat resilience at the time of global warming: evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 32, 117 (2020).


Google Scholar
 

Ettinger, A. K. et al. Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Sci. Rep. 14, 3266 (2024).


Google Scholar
 

Maggiotto, G., Miani, A., Rizzo, E., Castellone, M. D. & Piscitelli, P. Heat waves and adaptation strategies in a mediterranean urban context. Environ. Res. 197, 111066 (2021).


Google Scholar
 

Sodoudi, S., Zhang, H., Chi, X., Müller, F. & Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 34, 85–96 (2018).


Google Scholar
 

Tan, Z., Lau, K. K.-L. & Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 114, 265–274 (2016).


Google Scholar
 

Sun, R. & Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 105, 27–33 (2012).


Google Scholar
 

Desert, A., Naboni, E. & Garcia, D. The spatial comfort and thermal delight of outdoor misting installations in hot and humid extreme environments. Energy Build. 224, 110202 (2020).


Google Scholar
 

Ulpiani, G., Di Giuseppe, E., Di Perna, C., D’Orazio, M. & Zinzi, M. Thermal comfort improvement in urban spaces with water spray systems: field measurements and survey. Build. Environ. 156, 46–61 (2019).


Google Scholar
 

Rigolon, A., Tabassum, N. & Ewing, R. Climate adaptation strategies for active transportation: barriers and facilitators in U.S. cities. Sustain. Cities Soc. 117, 105956 (2024).


Google Scholar
 

Keith, L. et al. Plan Integration for Resilience ScorecardTM (PIRSTM) for Heat: Spatially Evaluating Networks of Plans to Mitigate Heat (Version 1.0) (American Planning Association, 2022).

Gholami, M., Torreggiani, D., Tassinari, P. & Barbaresi, A. Developing a 3D city digital twin: enhancing walkability through a green pedestrian network (GPN) in the city of Imola, Italy. Land 11, 1917 (2022).

Delclòs-Alió, X. et al. Temperature and rain moderate the effect of neighborhood walkability on walking time for seniors in Barcelona. Int. J. Environ. Res. Public Health 17, 14 (2019).


Google Scholar
 

Mouada, N., Zemmouri, N. & Meziani, R. Urban morphology, outdoor thermal comfort and walkability in hot, dry cities. Int. Rev. Spatial Plann. Sustain. Dev. 7, 117–133 (2019).


Google Scholar
 

Maghelal, P.Walkability: a review of existing pedestrian indices. URISA J. 23, 5–19 (2011).


Google Scholar
 

EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks (United States Environmental Protection Agency, 2023).

Fang, Z., Lin, Z., Mak, C. M., Niu, J. & Tse, K.-T. Investigation into sensitivities of factors in outdoor thermal comfort indices. Build. Environ. 128, 129–142 (2018).


Google Scholar
 

Fiala, D. & Havenith, G. in The Mechanobiology and Mechanophysiology of Military-Related Injuries (eds. Gefen, A. & Epstein, Y.) 265–302 (Springer, 2015).