Schlame, M. & Xu, Y. The function of tafazzin, a mitochondrial phospholipid-lysophospholipid acyltransferase. J. Mol. Biol. 432, 5043–5051 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schlame, M. & Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580, 5450–5455 (2006).

CAS 
PubMed 

Google Scholar
 

Hornby, B. et al. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome. Orphanet J. Rare Dis. 17, 336 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Kim, A. Y., Vernon, H., Manuel, R., Almuqbil, M. & Hornby, B. Quality of life in Barth syndrome. Ther. Adv. Rare Dis. 3, 26330040221093743 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Sabbah, H. N., Taylor, C. & Vernon, H. J. Temporal evolution of the heart failure phenotype in Barth syndrome and treatment with elamipretide. Future Cardiol. 19, 211–225 (2023).

CAS 
PubMed 

Google Scholar
 

Taylor, C. et al. Clinical presentation and natural history of Barth syndrome: an overview. J. Inherit. Metab. Dis. 45, 7–16 (2022).

PubMed 

Google Scholar
 

Wang, S. et al. Genetic modifiers modulate phenotypic expression of tafazzin deficiency in a mouse model of Barth syndrome. Hum. Mol. Genet. 32, 2055–2067 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, Q. & Han, X. Cardiolipin remodeling in diabetic heart. Chem. Phys. Lipids 179, 75–81 (2014).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhu, S. et al. Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of Barth syndrome cardiomyopathy. Circ. Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008289 (2021).

Whited, K., Baile, M. G., Currier, P. & Claypool, S. M. Seven functional classes of Barth syndrome mutation. Hum. Mol. Genet. 22, 483–492 (2013).

CAS 
PubMed 

Google Scholar
 

Anzmann, A. F. et al. Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. J. Biol. Chem. 297, 101005 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Costanzo, M. et al. Global genetic networks and the genotype-to-phenotype relationship. Cell 177, https://doi.org/10.1016/j.cell.2019.01.033 (2019).

Chen, R. et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat. Biotechnol. 34, 531–538 (2016).

CAS 
PubMed 

Google Scholar
 

Pu, W. T. Experimental models of Barth syndrome. J. Inherit. Metab. Dis. 45, 72–81 (2022).

PubMed 

Google Scholar
 

Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, https://doi.org/10.1038/s42255-020-0211-z (2020).

Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Mair, B. et al. Essential gene profiles for human pluripotent stem cells identify uncharacterized genes and substrate dependencies. Cell Rep. 27, 599–615 (2019).

CAS 
PubMed 

Google Scholar
 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bachovchin, D. A. & Cravatt, B. F. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11, 52–68 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Price, T. R. et al. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. PLoS Genet. 19, e1010713 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brandner, K. et al. Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome. Mol. Biol. Cell 16, 5202–5214 (2005).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Le, C. H. et al. Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. J. Biol. Chem. 295, 12485–12497 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Seneviratne, A. K. et al. The mitochondrial transacylase, tafazzin, regulates for AML stemness by modulating intracellular levels of phospholipids. Cell Stem Cell 24, 621–636 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beranek, A. et al. Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J. Biol. Chem. 284, 11572–11578 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, Y. et al. Cardiac metabolic pathways affected in the mouse model of Barth syndrome. PLoS ONE 10, e0128561 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Kutschka, I. et al. Activation of the integrated stress response rewires cardiac metabolism in Barth syndrome. Basic Res. Cardiol. 118, 47 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, O., Chinni, B. K., Manlhiot, C. & Vernon, H. J. FGF21 and GDF15 are elevated in Barth syndrome and are correlated to important clinical measures. Mol. Genet. Metab. 140, 107676 (2023).

CAS 
PubMed 

Google Scholar
 

Tung, C. et al. Elamipretide: a review of its structure, mechanism of action, and therapeutic potential. Int. J. Mol. Sci. 26, https://doi.org/10.3390/ijms26030944 (2025).

Bononi, G., Tuccinardi, T., Rizzolio, F. & Granchi, C. α/β-Hydrolase domain (ABHD) inhibitors as new potential therapeutic options against lipid-related diseases. J. Med. Chem. 64, 9759–9785 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ben Ali, Y. et al. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45, 14183–14191 (2006).

PubMed 

Google Scholar
 

Duncan, A. L. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem. Soc. Trans. 48, 993–1004 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burkhalter, M. D. et al. Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis. J. Clin. Invest. 129, 2841–2855 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

CAS 

Google Scholar
 

Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lesurf, R. et al. Whole genome sequencing delineates regulatory, copy number, and cryptic splice variants in early onset cardiomyopathy. npj Genom. Med. 7, 18 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carney, O. S. et al. Stem cell models of TAFAZZIN deficiency reveal novel tissue-specific pathologies in Barth syndrome. Hum. Mol. Genet. 34, 101–115 (2024).

Ye, C. et al. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J. Biol. Chem. 289, 3114–3125 (2014).

CAS 
PubMed 

Google Scholar
 

Tyurina, Y. Y. et al. Lipidomics characterization of biosynthetic and remodeling pathways of cardiolipins in genetically and nutritionally manipulated yeast cells. ACS Chem. Biol. 12, 265–281 (2017).

CAS 
PubMed 

Google Scholar
 

Dudek, J. et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res 11, 806–819 (2013).

CAS 
PubMed 

Google Scholar
 

McKenzie, M., Lazarou, M., Thorburn, D. R. & Ryan, M. T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 361, 462–469 (2006).

CAS 
PubMed 

Google Scholar
 

Zong, S. et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res 28, 1026–1034 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Musatov, A. & Robinson, N. C. Bound cardiolipin is essential for cytochrome c oxidase proton translocation. Biochimie 105, https://doi.org/10.1016/j.biochi.2014.07.005 (2014).

Sedlák, E. & Robinson, N. C. Destabilization of the quaternary structure of bovine heart cytochrome c oxidase upon removal of tightly bound cardiolipin. Biochemistry 54, https://doi.org/10.1021/acs.biochem.5b00540 (2015).

Benegiamo, G. et al. COX7A2L genetic variants determine cardiorespiratory fitness in mice and human. Nat. Metab. 4, 1336–1351 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pérez-Pérez, R. et al. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep. 16, 2387–2398 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Cogliati, S. et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579–582 (2016).

CAS 
PubMed 

Google Scholar
 

Mair, B., Aregger, M., Tong, A. H. Y., Chan, K. S. K. & Moffat, J. A method to map gene essentiality of human pluripotent stem cells by genome-scale CRISPR screens with inducible Cas9. Methods Mol. Biol. 2377, 1–27 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brockmann, M. et al. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546, 307–311 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, https://doi.org/10.14806/ej.17.1.200 (2011).

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

CAS 
PubMed 

Google Scholar
 

Herzog, K. et al. Lipidomic analysis of fibroblasts from Zellweger spectrum disorder patients identifies disease-specific phospholipid ratios. J. Lipid Res. 57, 1447–1454 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pinault, M. et al. A 1D high performance thin layer chromatography method validated to quantify phospholipids including cardiolipin and monolysocardiolipin from biological samples. Eur. J. Lipid Sci. Technol. 122, 1900240 (2020).

CAS 

Google Scholar
 

Plekhanov, A. Y. Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains. Anal. Biochem. 271, 186–187 (1999).

CAS 
PubMed 

Google Scholar
 

Jha, P., Wang, X. & Auwerx, J. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr. Protoc. Mouse Biol. 6, 1–14 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

CAS 
PubMed 

Google Scholar
 

Aken, B. L. et al. Ensembl 2017. Nucleic Acids Res. 45, D635–D642 (2017).

CAS 
PubMed 

Google Scholar
 

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fonslow, B. R. et al. Digestion and depletion of abundant proteins improves proteomic coverage. Nat. Methods 10, 54–56 (2013).

CAS 
PubMed 

Google Scholar
 

Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

CAS 
PubMed 

Google Scholar
 

He, L., Diedrich, J., Chu, Y. Y. & Yates, J. R. 3rd Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal. Chem. 87, 11361–11367 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics 129, 16–24 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tabb, D. L., McDonald, W. H. & Yates, J. R. III DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, J. et al. CIMAGE2.0: an expanded tool for quantitative analysis of activity-based protein profiling (ABPP) data. J. Proteome Res. 20, 4893–4900 (2021).

CAS 
PubMed 

Google Scholar
 

Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, S. et al. AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome. Circ. Res. 126, 1024–1039 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ren, M. et al. Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis. J. Cell Biol. 218, 1491–1502 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Molenaars, M. et al. Metabolomics and lipidomics in Caenorhabditis elegans using a single-sample preparation. Dis. Model. Mech. 14, https://doi.org/10.1242/dmm.047746 (2021).

Kulik, W. et al. Bloodspot assay using HPLC–tandem mass spectrometry for detection of Barth syndrome. Clin. Chem. 54, 371–378 (2008).

van der Sande, M. et al. Seq2science: an end-to-end workflow for functional genomics analysis. PeerJ 11, e16380 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Frölich, S., van der Sande, M., Schäfers, T. & van Heeringen, S. J. genomepy: genes and genomes at your fingertips. Bioinformatics 39, https://doi.org/10.1093/bioinformatics/btad119 (2023).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

CAS 
PubMed 

Google Scholar
 

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Sayols, S., Scherzinger, D. & Klein, H. dupRadar: a Bioconductor package for the assessment of PCR artifacts in RNA-Seq data. BMC Bioinformatics 17, 428 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gertsenstein, M. & Nutter, L. M. J. Production of knockout mouse lines with Cas9. Methods 191, 32–43 (2021).

CAS 
PubMed 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar