Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986).

ADS 

Google Scholar
 

Norman, M. R. Materials design for new superconductors. Rep. Prog. Phys. 79, 074502 (2016).

ADS 

Google Scholar
 

Azuma, M., Hiroi, Z., Takano, M., Bando, Y. & Takeda, Y. Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2. Nature 356, 775–776 (1992).

ADS 

Google Scholar
 

Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

ADS 

Google Scholar
 

Lee, K.-W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

ADS 

Google Scholar
 

Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 79, 1181–1194 (1983).


Google Scholar
 

Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for yopotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).


Google Scholar
 

Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

ADS 

Google Scholar
 

Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

ADS 

Google Scholar
 

Li, Q. et al. Signature of superconductivity in pressurized La4Ni3O10. Chin. Phys. Lett. 41, 017401 (2024).

ADS 

Google Scholar
 

Zhu, Y. et al. Superconductivity in tri-layer nickelate La4Ni3O10 single crystals. Nature 631, 531–536 (2024).


Google Scholar
 

Zhang, M. et al. Superconductivity in tri-layer nickelate La4Ni3O10 under pressure. Phys. Rev. X 15, 021005 (2025).


Google Scholar
 

Sakakibara, H. et al. Theoretical analysis on the possibility of superconductivity in the tri-layer Ruddlesden‒Popper nickelate La4Ni3O10 under pressure and its experimental examination: comparison with La3Ni2O7. Phys. Rev. B 109, 144511 (2024).

ADS 

Google Scholar
 

Dan, Z. et al. Pressure-enhanced spin-density-wave transition in double-layer nickelate La3Ni2O7−δ. Sci. Bull. 70, 1239–1245 (2025).


Google Scholar
 

Chen, K. et al. Evidence of spin density waves in La3Ni2O7−δ. Phys. Rev. Lett. 132, 256503 (2024).


Google Scholar
 

Zhang, J. et al. Intertwined density waves in a metallic nickelate. Nat. Commun. 11, 6003 (2020).

ADS 

Google Scholar
 

Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behavior in La3Ni2O7−δ. Nat. Phys. 20, 1269–1273 (2024).


Google Scholar
 

Li, F. et al. Design and synthesis of three-dimensional hybrid Ruddlesden‒Popper nickelate single crystals. Phys. Rev. Mater. 8, 053401 (2024).


Google Scholar
 

Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).


Google Scholar
 

Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).


Google Scholar
 

Shulga, S. V. et al. Upper critical field peculiarities of superconducting YNi2B2C and LuNi2B2C. Phys. Rev. Lett. 80, 1730 (1998).

ADS 

Google Scholar
 

Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).


Google Scholar
 

Shi, M. et al. Absence of superconductivity and density-wave transition in ambient-pressure tetragonal La4Ni3O10. Nat. Commun. 16, 2887 (2025).


Google Scholar
 

Shi, M. et al. Prerequisite of superconductivity: SDW rather than tetragonal structure in double-layer La3Ni2O7−x. Preprint at https://arxiv.org/abs/2501.14202 (2025).

Li, J. et al. Identification of the superconductivity in bilayer nickelate La3Ni2O7 upon 100 GPa. Natl Sci. Rev. 12, nwaf220 (2025).


Google Scholar
 

Liu, Y. et al. Superconductivity and normal-state transport in compressively strained La2PrNi2O7 thin films. Nat. Mater. 24, 1221–1227 (2025).


Google Scholar
 

Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).


Google Scholar
 

Thanh, T. D. et al. Structure, magnetic, and electrical properties of La2NiO4+δ compounds. IEEE Trans. Magn. 53, 8204904 (2017).


Google Scholar
 

Prozorov, R. & Kogan, V. G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. App. 10, 014030 (2018).


Google Scholar
 

Wang, G. et al. Pressure-induced superconductivity in poly-crystalline La3Ni2O7−δ. Phys. Rev. X 14, 011040 (2024).


Google Scholar
 

Shi, M. et al. Pressure induced superconductivity in hybrid Ruddlesden‒Popper La5Ni3O11 single crystals. Raw Data. figshare https://doi.org/10.6084/m9.figshare.29484635 (2025).