Bernardi, F., Olivucci, M. & Robb, M. A. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321 (1996).

CAS 

Google Scholar
 

Levine, B. G. & Martínez, T. J. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58, 613–634 (2007).

CAS 
PubMed 

Google Scholar
 

Crespo-Hernández, C. E., Cohen, B., Hare, P. M. & Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2020 (2004).

PubMed 

Google Scholar
 

Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

CAS 
PubMed 

Google Scholar
 

Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).

CAS 

Google Scholar
 

Worth, G. A. & Cederbaum, L. S. Beyond born-oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).

CAS 
PubMed 

Google Scholar
 

Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).

CAS 
PubMed 

Google Scholar
 

Zinchenko, K. S. et al. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371, 489–494 (2021).

CAS 
PubMed 

Google Scholar
 

Wörner, H. J. et al. Conical intersection dynamics in no2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

PubMed 

Google Scholar
 

Minitti, M. P. et al. Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).

MathSciNet 
CAS 
PubMed 

Google Scholar
 

Yang, J. et al. Imaging CF3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).

CAS 
PubMed 

Google Scholar
 

Hosseinizadeh, A. et al. Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 599, 697–701 (2021).

CAS 
PubMed 

Google Scholar
 

Hoffmann, R. & Woodward, R. B. Conservation of orbital symmetry. Acc. Chem. Res. 1, 17–22 (1968).

CAS 

Google Scholar
 

Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).

CAS 
PubMed 

Google Scholar
 

Havinga, E. & Schlatmann, J. Remarks on the specificities of the photochemical and thermal transformations in the vitamin d field. Tetrahedron 16, 146–152 (1961).


Google Scholar
 

Chopade, P. & Louie, J. [2+2+2] cycloaddition reactions catalyzed by transition metal complexes. Adv. Synth. Catal. 348, 2307–2327 (2006).

CAS 

Google Scholar
 

Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

CAS 
PubMed 

Google Scholar
 

Garavelli, M. et al. Reaction path of a sub-200 fs photochemical electrocyclic reaction. J. Phys. Chem. A 105, 4458–4469 (2001).

CAS 

Google Scholar
 

Kosma, K., Trushin, S. A., Fuß, W. & Schmid, W. E. Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path. Phys. Chem. Chem. Phys. 11, 172–181 (2009).

CAS 
PubMed 

Google Scholar
 

Kuthirummal, N., Rudakov, F. M., Evans, C. L. & Weber, P. M. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J. Chem. Phys. 125, 133307 (2006).

PubMed 

Google Scholar
 

Travnikova, O. et al. Photochemical ring-opening reaction of 1,3-cyclohexadiene: identifying the true reactive state. J. Am. Chem. Soc. 144, 21878–21886 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruan, C.-Y. et al. Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium. Proc. Natl Acad. Sci. 98, 7117–7122 (2001).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).

CAS 
PubMed 

Google Scholar
 

Arruda, B. C. & Sension, R. J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16, 4439 (2014).

CAS 
PubMed 

Google Scholar
 

Pemberton, C. C., Zhang, Y., Saita, K., Kirrander, A. & Weber, P. M. From the (1b) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119, 8832–8845 (2015).

CAS 
PubMed 

Google Scholar
 

Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

CAS 
PubMed 

Google Scholar
 

Karashima, S. et al. Ultrafast ring-opening reaction of 1,3-cyclohexadiene: identification of nonadiabatic pathway via doubly excited state. J. Am. Chem. Soc. 143, 8034–8045 (2021).

CAS 
PubMed 

Google Scholar
 

Centurion, M., Wolf, T. J. & Yang, J. Ultrafast imaging of molecules with electron diffraction. Annu. Rev. Phys. Chem. 73, 21–42 (2022).

CAS 
PubMed 

Google Scholar
 

Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).

CAS 
PubMed 

Google Scholar
 

Lee, Y., Oang, K. Y., Kim, D. & Ihee, H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. Struct. Dyn. 11, 031301 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Ruddock, J. M. et al. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci. Adv. 5, eaax6625 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, L. et al. Ultrafast x-ray and electron scattering of free molecules: A comparative evaluation. Struct. Dyn. 7, 034102 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

CAS 
PubMed 

Google Scholar
 

Qi, F. et al. Breaking 50 femtosecond resolution barrier in mev ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).

CAS 
PubMed 

Google Scholar
 

Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).


Google Scholar
 

Ma, Z. et al. Ultrafast isolated molecule imaging without crystallization. Proc. Natl Acad. Sci. USA 119, e2122793119 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932).

CAS 

Google Scholar
 

Crespo-Otero, R. & Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118, 7026–7068 (2018).

CAS 
PubMed 

Google Scholar
 

Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).

CAS 
PubMed 

Google Scholar
 

Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

CAS 
PubMed 

Google Scholar
 

Moerner, W. E. W. E. Nobel lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy. Rev. Mod. Phys. 87, 1183–1212 (2015).

CAS 

Google Scholar
 

Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Natan, A. Real-space inversion and super-resolution of ultrafast scattering. Phys. Rev. A 107, 023105 (2023).

CAS 

Google Scholar
 

Prince, E. et al. (eds.) International Tables for Crystallography: Mathematical, physical and chemical tables, vol. C of International Tables for Crystallography (International Union of Crystallography, Chester, England, 2006), 1 edn.

Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).

CAS 
PubMed 

Google Scholar
 

Champenois, E. G. et al. Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction. Phys. Rev. Lett. 131, 143001 (2023).

CAS 
PubMed 

Google Scholar
 

Wang, T. et al. Imaging the photochemical dynamics of cyclobutanone with MeV ultrafast electron diffraction. J. Chem. Phys. 162, 184201 (2025).

CAS 
PubMed 

Google Scholar
 

Green, A. E. et al. Imaging the photochemistry of cyclobutanone using ultrafast electron diffraction: Experimental results. J. Chem. Phys. 162, 184303 (2025).

CAS 
PubMed 

Google Scholar
 

Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).

CAS 
PubMed 

Google Scholar
 

Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

CAS 
PubMed 

Google Scholar
 

Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial Molecular Machines. Chem. Rev. 115, 10081–10206 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rouxel, J. R., Keefer, D. & Mukamel, S. Signatures of electronic and nuclear coherences in ultrafast molecular x-ray and electron diffraction. Struct. Dyn. 8, 014101 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rouxel, J. R. et al. Coupled electronic and nuclear motions during azobenzene photoisomerization monitored by ultrafast electron diffraction. J. Chem. Theory Comput. 18, 605–613 (2022).

CAS 
PubMed 

Google Scholar
 

Ihee, H., Goodson, B. M., Srinivasan, R., Lobastov, V. A. & Zewail, A. H. Ultrafast electron diffraction and structural dynamics: transient intermediates in the elimination reaction of c2 f4 i2. J. Phys. Chem. A 106, 4087–4103 (2002).

CAS 

Google Scholar
 

Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58, 267–288 (1996).

MathSciNet 

Google Scholar
 

Hansen, P. C. & O’Leary, D. P. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993).

MathSciNet 

Google Scholar
 

Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

MathSciNet 

Google Scholar
 

Frisch, M. J. et al. Gaussian˜16 Revision C.01 Gaussian Inc. Wallingford CT (2016).

Shiozaki, T., Györffy, W., Celani, P. & Werner, H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 135, 081106 (2011).

PubMed 

Google Scholar
 

Roos, B. O. & Andersson, K. Multiconfigurational perturbation theory with level shift -” the Cr2 potential revisited. Chem. Phys. Lett. 245, 215–223 (1995).

CAS 

Google Scholar
 

Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

CAS 
PubMed 

Google Scholar
 

Park, J. W. & Shiozaki, T. Analytical derivative coupling for multistate CASPT2 theory. J. Chem. Theory Comput. 13, 2561–2570 (2017).

CAS 
PubMed 

Google Scholar
 

Crespo-Otero, R. & Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 131, 1237 (2012).


Google Scholar
 

Hait, D. et al. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J. Chem. Phys. 160, 244101 (2024).

CAS 
PubMed 

Google Scholar
 

Granucci, G. & Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 126, 134114 (2007).

PubMed 

Google Scholar
 

Zhu, C., Nangia, S., Jasper, A. W. & Truhlar, D. G. Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories. J. Chem. Phys. 121, 7658–7670 (2004).

CAS 
PubMed 

Google Scholar
 

Hu, D., Xie, Y., Peng, J. & Lan, Z. On-the-fly symmetrical quasi-classical dynamics with meyer-miller mapping hamiltonian for the treatment of nonadiabatic dynamics at conical intersections. J. Chem. Theory Comput. 17, 3267–3279 (2021).

CAS 
PubMed 

Google Scholar
 

Salvat, F., Jablonski, A. & Powell, C. J. Elsepa-“dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Computer Phys. Commun. 165, 157–190 (2005).

CAS 

Google Scholar
 

Polyak, I., Hutton, L., Crespo-Otero, R., Barbatti, M. & Knowles, P. J. Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping. J. Chem. Theory Comput. 15, 3929–3940 (2019).

CAS 
PubMed 

Google Scholar
 

Medhi, B. & Sarma, M. Deciphering the Internal Conversion Processes Involved in the Photochemical Ring-Opening of 1,3-Cyclohexadiene by Symmetric sp2 -Carbon Substitutions. J. Phys. Chem. A 128, 2025–2037 (2024).

CAS 
PubMed 

Google Scholar
 

Jiang, H., Zhang, J., Lan, Z. & Xiang, D. Super-resolution femtosecond electron diffraction reveals electronic and nuclear dynamics at conical intersections https://doi.org/10.5281/zenodo.15501480 (2025).