Bernardi, F., Olivucci, M. & Robb, M. A. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321 (1996).
Levine, B. G. & MartÃnez, T. J. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58, 613–634 (2007).
Crespo-Hernández, C. E., Cohen, B., Hare, P. M. & Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2020 (2004).
Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).
Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).
Worth, G. A. & Cederbaum, L. S. Beyond born-oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).
Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).
Zinchenko, K. S. et al. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371, 489–494 (2021).
Wörner, H. J. et al. Conical intersection dynamics in no2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).
Minitti, M. P. et al. Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).
Yang, J. et al. Imaging CF3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).
Hosseinizadeh, A. et al. Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 599, 697–701 (2021).
Hoffmann, R. & Woodward, R. B. Conservation of orbital symmetry. Acc. Chem. Res. 1, 17–22 (1968).
Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).
Havinga, E. & Schlatmann, J. Remarks on the specificities of the photochemical and thermal transformations in the vitamin d field. Tetrahedron 16, 146–152 (1961).
Chopade, P. & Louie, J. [2+2+2] cycloaddition reactions catalyzed by transition metal complexes. Adv. Synth. Catal. 348, 2307–2327 (2006).
Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).
Garavelli, M. et al. Reaction path of a sub-200 fs photochemical electrocyclic reaction. J. Phys. Chem. A 105, 4458–4469 (2001).
Kosma, K., Trushin, S. A., Fuß, W. & Schmid, W. E. Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path. Phys. Chem. Chem. Phys. 11, 172–181 (2009).
Kuthirummal, N., Rudakov, F. M., Evans, C. L. & Weber, P. M. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J. Chem. Phys. 125, 133307 (2006).
Travnikova, O. et al. Photochemical ring-opening reaction of 1,3-cyclohexadiene: identifying the true reactive state. J. Am. Chem. Soc. 144, 21878–21886 (2022).
Ruan, C.-Y. et al. Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium. Proc. Natl Acad. Sci. 98, 7117–7122 (2001).
Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).
Arruda, B. C. & Sension, R. J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16, 4439 (2014).
Pemberton, C. C., Zhang, Y., Saita, K., Kirrander, A. & Weber, P. M. From the (1b) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119, 8832–8845 (2015).
Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).
Karashima, S. et al. Ultrafast ring-opening reaction of 1,3-cyclohexadiene: identification of nonadiabatic pathway via doubly excited state. J. Am. Chem. Soc. 143, 8034–8045 (2021).
Centurion, M., Wolf, T. J. & Yang, J. Ultrafast imaging of molecules with electron diffraction. Annu. Rev. Phys. Chem. 73, 21–42 (2022).
Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).
Lee, Y., Oang, K. Y., Kim, D. & Ihee, H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. Struct. Dyn. 11, 031301 (2024).
Ruddock, J. M. et al. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci. Adv. 5, eaax6625 (2019).
Ma, L. et al. Ultrafast x-ray and electron scattering of free molecules: A comparative evaluation. Struct. Dyn. 7, 034102 (2020).
Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).
Qi, F. et al. Breaking 50 femtosecond resolution barrier in mev ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).
Ma, Z. et al. Ultrafast isolated molecule imaging without crystallization. Proc. Natl Acad. Sci. USA 119, e2122793119 (2022).
Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932).
Crespo-Otero, R. & Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118, 7026–7068 (2018).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Moerner, W. E. W. E. Nobel lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy. Rev. Mod. Phys. 87, 1183–1212 (2015).
Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).
Natan, A. Real-space inversion and super-resolution of ultrafast scattering. Phys. Rev. A 107, 023105 (2023).
Prince, E. et al. (eds.) International Tables for Crystallography: Mathematical, physical and chemical tables, vol. C of International Tables for Crystallography (International Union of Crystallography, Chester, England, 2006), 1 edn.
Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).
Champenois, E. G. et al. Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction. Phys. Rev. Lett. 131, 143001 (2023).
Wang, T. et al. Imaging the photochemical dynamics of cyclobutanone with MeV ultrafast electron diffraction. J. Chem. Phys. 162, 184201 (2025).
Green, A. E. et al. Imaging the photochemistry of cyclobutanone using ultrafast electron diffraction: Experimental results. J. Chem. Phys. 162, 184303 (2025).
Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).
Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial Molecular Machines. Chem. Rev. 115, 10081–10206 (2015).
Rouxel, J. R., Keefer, D. & Mukamel, S. Signatures of electronic and nuclear coherences in ultrafast molecular x-ray and electron diffraction. Struct. Dyn. 8, 014101 (2021).
Rouxel, J. R. et al. Coupled electronic and nuclear motions during azobenzene photoisomerization monitored by ultrafast electron diffraction. J. Chem. Theory Comput. 18, 605–613 (2022).
Ihee, H., Goodson, B. M., Srinivasan, R., Lobastov, V. A. & Zewail, A. H. Ultrafast electron diffraction and structural dynamics: transient intermediates in the elimination reaction of c2 f4 i2. J. Phys. Chem. A 106, 4087–4103 (2002).
Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58, 267–288 (1996).
Hansen, P. C. & O’Leary, D. P. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993).
Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).
Frisch, M. J. et al. Gaussian˜16 Revision C.01 Gaussian Inc. Wallingford CT (2016).
Shiozaki, T., Györffy, W., Celani, P. & Werner, H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 135, 081106 (2011).
Roos, B. O. & Andersson, K. Multiconfigurational perturbation theory with level shift -” the Cr2 potential revisited. Chem. Phys. Lett. 245, 215–223 (1995).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).
Park, J. W. & Shiozaki, T. Analytical derivative coupling for multistate CASPT2 theory. J. Chem. Theory Comput. 13, 2561–2570 (2017).
Crespo-Otero, R. & Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 131, 1237 (2012).
Hait, D. et al. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J. Chem. Phys. 160, 244101 (2024).
Granucci, G. & Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 126, 134114 (2007).
Zhu, C., Nangia, S., Jasper, A. W. & Truhlar, D. G. Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories. J. Chem. Phys. 121, 7658–7670 (2004).
Hu, D., Xie, Y., Peng, J. & Lan, Z. On-the-fly symmetrical quasi-classical dynamics with meyer-miller mapping hamiltonian for the treatment of nonadiabatic dynamics at conical intersections. J. Chem. Theory Comput. 17, 3267–3279 (2021).
Salvat, F., Jablonski, A. & Powell, C. J. Elsepa-“dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Computer Phys. Commun. 165, 157–190 (2005).
Polyak, I., Hutton, L., Crespo-Otero, R., Barbatti, M. & Knowles, P. J. Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping. J. Chem. Theory Comput. 15, 3929–3940 (2019).
Medhi, B. & Sarma, M. Deciphering the Internal Conversion Processes Involved in the Photochemical Ring-Opening of 1,3-Cyclohexadiene by Symmetric sp2 -Carbon Substitutions. J. Phys. Chem. A 128, 2025–2037 (2024).
Jiang, H., Zhang, J., Lan, Z. & Xiang, D. Super-resolution femtosecond electron diffraction reveals electronic and nuclear dynamics at conical intersections https://doi.org/10.5281/zenodo.15501480 (2025).