Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).
Martin, L. & Rappe, A. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).
Hung, N. T. et al. Symmetry breaking in 2D materials for optimizing second-harmonic generation. J. Phys. D 57, 333002 (2024).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).
Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).
Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).
Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015).
Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021).
Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=03RLpj-tc_ (ICLR, 2022).
Yang, M. et al. Scalable diffusion for materials generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=2vt5z5x9fS (ICLR, 2024).
Jiao, R. et al. Crystal structure prediction by joint equivariant diffusion. Adv. Neural Inf. Process. Syst. 36, 17464–17497 (2024).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Jiao, R., Huang, W., Liu, Y., Zhao, D. & Liu, Y. Space group constrained crystal generation. In Proc. International Conference on Learning Representations 2024 (ICLR, 2024)
Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).
Cao, Z., Luo, X., Lv, J. & Wang, L. Space group informed transformer for crystalline materials generation. Preprint at https://arxiv.org/abs/2403.15734 (2024).
Martinez, J. Archimedean lattices. Algebra Universalis 3, 247–260 (1973).
Eddi, A., Decelle, A., Fort, E. & Couder, Y. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87, 56002 (2009).
Zimmermann, N. E. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).
Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
Tsai, W.-F., Fang, C., Yao, H. & Hu, J. Interaction-driven topological and nematic phases on the Lieb lattice. New J. Phys. 17, 055016 (2015).
Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).
Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).
Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).
Pickett, W. E. The dawn of the nickel age of superconductivity. Nat. Rev. Phys. 3, 7–8 (2021).
Merker, H. A. et al. Machine learning magnetism classifiers from atomic coordinates. Iscience 25, 105192 (2022).
Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).
Tranquada, J. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett. 78, 338 (1997).
Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Pan, H. et al. Benchmarking coordination number prediction algorithms on inorganic crystal structures. Inorg. Chem. 60, 1590–1603 (2021).
Zachariasen, W. Metallic radii and electron configurations of the 5f–6d metals. J. Inorg. Nucl. Chem. 35, 3487–3497 (1973).
Lugmayr, A. et al. Repaint: inpainting using denoising diffusion probabilistic models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (ed O’Conner, L.) 11461–11471 (IEEE, 2022).
Song, Y. et al. Score-based generative modeling through stochastic differential equations. In Proc. International Conference on Learning Representations 2021 https://openreview.net/pdf?id=PxTIG12RRHS (ICLR, 2021).
Davies, D. W. et al. Smact: Semiconducting materials by analogy and chemical theory. J. Open Source Softw. 4, 1361 (2019).
Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint at https://arxiv.org/abs/2207.09453 (2022).
Chen, Z. et al. Direct prediction of phonon density of states with Euclidean neural networks. Adv. Sci. 8, 2004214 (2021).
Riebesell, J. et al. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell. 7, 836–847 (2025).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).
Okabe, R. Structural constraint integration in a generative model for discovery of quantum material candidates. figshare https://doi.org/10.6084/m9.figshare.c.7283062 (2025).