Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

Article 
PubMed 

Google Scholar
 

Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

Article 

Google Scholar
 

Martin, L. & Rappe, A. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).

Article 
CAS 

Google Scholar
 

Hung, N. T. et al. Symmetry breaking in 2D materials for optimizing second-harmonic generation. J. Phys. D 57, 333002 (2024).

Article 

Google Scholar
 

Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

Article 
CAS 

Google Scholar
 

Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

Article 
CAS 

Google Scholar
 

Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

Article 
PubMed 

Google Scholar
 

Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).

Article 

Google Scholar
 

Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015).

Article 
PubMed 

Google Scholar
 

Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=03RLpj-tc_ (ICLR, 2022).

Yang, M. et al. Scalable diffusion for materials generation. In Proc. International Conference on Learning Representations https://openreview.net/pdf?id=2vt5z5x9fS (ICLR, 2024).

Jiao, R. et al. Crystal structure prediction by joint equivariant diffusion. Adv. Neural Inf. Process. Syst. 36, 17464–17497 (2024).


Google Scholar
 

Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jiao, R., Huang, W., Liu, Y., Zhao, D. & Liu, Y. Space group constrained crystal generation. In Proc. International Conference on Learning Representations 2024 (ICLR, 2024)

Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).

Cao, Z., Luo, X., Lv, J. & Wang, L. Space group informed transformer for crystalline materials generation. Preprint at https://arxiv.org/abs/2403.15734 (2024).

Martinez, J. Archimedean lattices. Algebra Universalis 3, 247–260 (1973).

Article 

Google Scholar
 

Eddi, A., Decelle, A., Fort, E. & Couder, Y. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87, 56002 (2009).

Article 

Google Scholar
 

Zimmermann, N. E. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Tsai, W.-F., Fang, C., Yao, H. & Hu, J. Interaction-driven topological and nematic phases on the Lieb lattice. New J. Phys. 17, 055016 (2015).

Article 

Google Scholar
 

Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

Article 
PubMed 

Google Scholar
 

Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

Article 
PubMed 

Google Scholar
 

Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

Article 
CAS 

Google Scholar
 

Pickett, W. E. The dawn of the nickel age of superconductivity. Nat. Rev. Phys. 3, 7–8 (2021).

Article 

Google Scholar
 

Merker, H. A. et al. Machine learning magnetism classifiers from atomic coordinates. Iscience 25, 105192 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

Article 
CAS 

Google Scholar
 

Tranquada, J. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett. 78, 338 (1997).

Article 
CAS 

Google Scholar
 

Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Article 

Google Scholar
 

Pan, H. et al. Benchmarking coordination number prediction algorithms on inorganic crystal structures. Inorg. Chem. 60, 1590–1603 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Zachariasen, W. Metallic radii and electron configurations of the 5f–6d metals. J. Inorg. Nucl. Chem. 35, 3487–3497 (1973).

Article 
CAS 

Google Scholar
 

Lugmayr, A. et al. Repaint: inpainting using denoising diffusion probabilistic models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (ed O’Conner, L.) 11461–11471 (IEEE, 2022).

Song, Y. et al. Score-based generative modeling through stochastic differential equations. In Proc. International Conference on Learning Representations 2021 https://openreview.net/pdf?id=PxTIG12RRHS (ICLR, 2021).

Davies, D. W. et al. Smact: Semiconducting materials by analogy and chemical theory. J. Open Source Softw. 4, 1361 (2019).

Article 

Google Scholar
 

Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint at https://arxiv.org/abs/2207.09453 (2022).

Chen, Z. et al. Direct prediction of phonon density of states with Euclidean neural networks. Adv. Sci. 8, 2004214 (2021).

Article 
CAS 

Google Scholar
 

Riebesell, J. et al. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell. 7, 836–847 (2025).

Article 

Google Scholar
 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

Article 
CAS 

Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

Article 

Google Scholar
 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

Article 
CAS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

Article 
PubMed 
CAS 

Google Scholar
 

Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

Article 
CAS 

Google Scholar
 

Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Article 
CAS 

Google Scholar
 

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

Article 

Google Scholar
 

Okabe, R. Structural constraint integration in a generative model for discovery of quantum material candidates. figshare https://doi.org/10.6084/m9.figshare.c.7283062 (2025).