Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998).

ADS 
CAS 

Google Scholar
 

Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. https://arxiv.org/abs/quant-ph/0001106 (2000).

Morita, S. & Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 49, https://doi.org/10.1063/1.2995837 (2008).

Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008).

ADS 
MathSciNet 
MATH 

Google Scholar
 

Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

ADS 
CAS 
PubMed 

Google Scholar
 

Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Superconductivity 24, 1–10 (2014).

ADS 

Google Scholar
 

Johnson, M. W. et al. A scalable control system for a superconducting adiabatic quantum optimization processor. Superconductor Sci. Technol. 23, 065004 (2010).

ADS 

Google Scholar
 

Lanting, T. et al. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014).


Google Scholar
 

Albash, T., Hen, I., Spedalieri, F. M. & Lidar, D. A. Reexamination of the evidence for entanglement in a quantum annealer. Phys. Rev. A 92, 062328 (2015).

ADS 

Google Scholar
 

King, A. D. et al. Coherent quantum annealing in a programmable 2000-qubit Ising chain. Nat. Phys. 18, 1324–1328 (2022).

CAS 

Google Scholar
 

King, A. D. et al. Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature 617, 61–66 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

King, A. D. et al. Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets. Nat. Commun. 12, 1113 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

King, A. D. et al. Computational supremacy in quantum simulation. https://arxiv.org/abs/2403.00910 (2024).

Tasseff, B. et al. On the emerging potential of quantum annealing hardware for combinatorial optimization. J Heuristics 30, 325–358 (2022).

Pelofske, E., Bärtschi, A. & Eidenbenz, S. Short-depth QAOA circuits and quantum annealing on higher-order Ising models. npj Quantum Inf. (2024).

Pelofske, E., Bärtschi, A. & Eidenbenz, S. Quantum annealing vs. QAOA: 127 qubit higher-order ising problems on NISQ computers. In Proc. International Conference on High Performance Computing ISC HPC’23, 240–258 (2023).

King, A. D. et al. Quantum annealing simulation of out-of-equilibrium magnetization in a spin-chain compound. PRX Quantum 2, 030317 (2021).

ADS 

Google Scholar
 

Bauza, H. M. & Lidar, D. A. Scaling advantage in approximate optimization with quantum annealing. https://arxiv.org/abs/2401.07184 (2024).

Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

ADS 
MathSciNet 

Google Scholar
 

Born, M. & Fock, V. Beweis des adiabatensatzes. Z. Phys. 51, 165–180 (1928).

ADS 
CAS 
MATH 

Google Scholar
 

Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–15 (2014).


Google Scholar
 

Boros, E., Hammer, P. & Tavares, G. Preprocessing of unconstrained quadratic binary optimization. Rutcor Res. Rep. RRR 10-2006, 1–58 (2006).


Google Scholar
 

Boros, E., Hammer, P. & Tavares, G. Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO). J. Heuristics 13, 99–132 (2007).


Google Scholar
 

Venturelli, D. et al. Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 031040 (2015).


Google Scholar
 

Pudenz, K. L., Albash, T. & Lidar, D. A. Quantum annealing correction for random ising problems. Phys. Rev. A 91, 042302 (2015).

ADS 

Google Scholar
 

King, A. D., Hoskinson, E., Lanting, T., Andriyash, E. & Amin, M. H. Degeneracy, degree, and heavy tails in quantum annealing. Phys. Rev. A 93, https://doi.org/10.1103/PhysRevA.93.052320 (2016).

Mehta, V., Jin, F., De Raedt, H. & Michielsen, K. Quantum annealing for hard 2-satisfiability problems: distribution and scaling of minimum energy gap and success probability. Phys. Rev. A 105, 062406 (2022).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Pelofske, E., Hahn, G. & Djidjev, H. N. Parallel quantum annealing. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-08394-8 (2022).

Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, https://doi.org/10.1103/PhysRevX.8.031016 (2018).

Pelofske, E., Hahn, G. & Djidjev, H. N. Solving larger maximum clique problems using parallel quantum annealing. Quantum Inf. Process. 22, https://doi.org/10.1007/s11128-023-03962-x (2023).

Pelofske, E., Hahn, G. & Djidjev, H. N. Noise dynamics of quantum annealers: estimating the effective noise using idle qubits. Quantum Sci. Technol. 8, 035005 (2023).

ADS 

Google Scholar
 

Vyskočil, T., Pakin, S. & Djidjev, H. N. Embedding inequality constraints for quantum annealing optimization. In Proc. First International Workshop on Quantum Technology and Optimization Problems, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1, 11–22 https://doi.org/10.1007/978-3-030-14082-3_2 (Springer, 2019).

Könz, M. S., Lechner, W., Katzgraber, H. G. & Troyer, M. Embedding overhead scaling of optimization problems in quantum annealing. PRX Quantum 2, 040322 (2021).

ADS 

Google Scholar
 

Cai, J., Macready, W. G. & Roy, A. A practical heuristic for finding graph minors. https://doi.org/10.48550/arXiv.1406.2741 (2014).

Lucas, A. Hard combinatorial problems and minor embeddings on lattice graphs. Quantum Inf. Process. 18, 1–38 (2019).

MathSciNet 

Google Scholar
 

Choi, V. Minor-embedding in adiabatic quantum computation: II. minor-universal graph design. Quantum Inf. Process. 10, 343–353 (2011).

ADS 
MathSciNet 
MATH 

Google Scholar
 

Choi, V. Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008).

ADS 
MathSciNet 
MATH 

Google Scholar
 

Pearson, A., Mishra, A., Hen, I. & Lidar, D. A. Analog errors in quantum annealing: doom and hope. npj Quantum Inf. 5, 107 (2019).

ADS 

Google Scholar
 

Lanting, T. et al. Probing environmental spin polarization with superconducting flux qubits. arXiv preprint. https://doi.org/10.48550/arXiv.2003.14244 (2020).

Nelson, J., Vuffray, M., Lokhov, A. Y. & Coffrin, C. Single-qubit fidelity assessment of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021).


Google Scholar
 

Zaborniak, T. & de Sousa, R. Benchmarking hamiltonian noise in the d-wave quantum annealer. IEEE Trans. Quantum Eng. 2, 1–6 (2021).


Google Scholar
 

Grant, E. & Humble, T. S. Benchmarking embedded chain breaking in quantum annealing. Quantum Sci. Technol. 7, 025029 (2022).

ADS 

Google Scholar
 

Pelofske, E., Hahn, G. & Djidjev, H. N. Reducing quantum annealing biases for solving the graph partitioning problem. In: Proc. 18th ACM International Conference on Computing Frontiers, CF’21, 133–139. https://doi.org/10.1145/3457388.3458672 (Association for Computing Machinery, 2021).

Vinci, W., Albash, T., Paz-Silva, G., Hen, I. & Lidar, D. A. Quantum annealing correction with minor embedding. Phys. Rev. A 92, 042310 (2015).

ADS 

Google Scholar
 

Vinci, W., Albash, T. & Lidar, D. A. Nested quantum annealing correction. npj Quantum Inf. 2, 1–6 (2016).


Google Scholar
 

Pudenz, K. L., Albash, T. & Lidar, D. A. Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 1–10 (2014).


Google Scholar
 

Hen, I. et al. Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015).

ADS 

Google Scholar
 

King, A. D., Lanting, T. & Harris, R. Performance of a quantum annealer on range-limited constraint satisfaction problems. 1502.02098 (2015).

Perera, D., Hamze, F., Raymond, J., Weigel, M. & Katzgraber, H. Computational hardness of spin-glass problems with tile-planted solutions. Phys. Rev. E 101, 023316 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Wang, W., Mandrà, S. & Katzgraber, H. Patch-planting spin-glass solution for benchmarking. Phys. Rev. E 96, 023312 (2017).

ADS 
PubMed 

Google Scholar
 

Pei, Y., Manukian, H. & Di Ventra, M. Generating weighted MAX-2-SAT instances with frustrated loops: an RBM case study. J. Mach. Learn. Res. 21, 1–55 (2020).

MathSciNet 

Google Scholar
 

Hamze, F. et al. From near to eternity: spin-glass planting, tiling puzzles, and constraint-satisfaction problems. Phys. Rev. E 97, 043303 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Kowalsky, M., Albash, T., Hen, I. & Lidar, D. 3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers. Quantum Sci. Technol. 7, 025008 (2022).

ADS 

Google Scholar
 

Hen, I. Equation planting: a tool for benchmarking ising machines. Phys. Rev. Appl. 12, 011003 (2019).

ADS 
CAS 

Google Scholar
 

Perera, D. et al. Chook—a comprehensive suite for generating binary optimization problems with planted solutions 1–8. https://doi.org/10.48550/arXiv.2005.14344 (2021).

Carleton Coffrin. D-Wave Instance Generator (D-WIG). https://github.com/lanl-ansi/dwig (2022).

King, J. et al. Quantum annealing amid local ruggedness and global frustration. https://arxiv.org/abs/1701.04579 (2017).

Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).


Google Scholar
 

Mandrá, S., Katzgraber, H. G. & Thomas, C. The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Sci. Technol. 2, 038501 (2017).

ADS 

Google Scholar
 

Hahn, G., Pelofske, E. & Djidjev, H. N. Posiform planting: generating QUBO instances for benchmarking. Front. Comput. Sci. 5, https://doi.org/10.3389/fcomp.2023.1275948 (2023).

Isermann, S. A note on posiform planting (2024).

Aspvall, B., Plass, M. & Tarjan, R. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8, 121–123 (1979).

MathSciNet 
MATH 

Google Scholar
 

Dattani, N., Szalay, S. & Chancellor, N. Pegasus:the second connectivity graph for large-scale quantum annealing hardware. https://arxiv.org/abs/1901.07636 (2019).

Boothby, K., Bunyk, P., Raymond, J. & Roy, A. Next-generation topology of d-wave quantum processors. https://arxiv.org/abs/2003.00133 (2020).

Boothby, K., King, A. D. & Raymond, J. Zephyr topology of D-Wave quantum processors. https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf (2021).

Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014).


Google Scholar
 

Weigel, M., Katzgraber, H. G., Machta, J., Hamze, F. & Andrist, R. S. Erratum: glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines [phys. rev. x 4, 021008 (2014)]. Phys. Rev. X 5, 019901 (2015).

CAS 

Google Scholar
 

Jaumá, G., García-Ripoll, J. J. & Pino, M. Exploring quantum annealing architectures: a spin glass perspective. 2307.13065 (2023).

Matsuda, Y., Nishimori, H. & Katzgraber, H. G. Quantum annealing for problems with ground-state degeneracy. J. Phys. Conf. Ser. 143, 012003 (2009).


Google Scholar
 

Zhu, Z., Ochoa, A. J. & Katzgraber, H. G. Fair sampling of ground-state configurations of binary optimization problems. Phys. Rev. E 99, https://doi.org/10.1103/PhysRevE.99.063314 (2019).

Mandrà, S., Zhu, Z. & Katzgraber, H. G. Exponentially biased ground-state sampling of quantum annealing machines with transverse-field driving hamiltonians. Phys. Rev. Lett. 118, 070502 (2017).

ADS 
PubMed 

Google Scholar
 

Albash, T., Rønnow, T., Troyer, M. & Lidar, D. Reexamining classical and quantum models for the d-wave one processor: the role of excited states and ground state degeneracy. Eur. Phys. J. Spec. Top. 224, 111–129 (2015).

ADS 

Google Scholar
 

Zhang, B. H., Wagenbreth, G., Martin-Mayor, V. & Hen, I. Advantages of unfair quantum ground-state sampling. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-01096-6 (2017).

Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum annealing. Nat. Commun. 4, https://doi.org/10.1038/ncomms3067 (2013).

Könz, M. S., Mazzola, G., Ochoa, A. J., Katzgraber, H. G. & Troyer, M. Uncertain fate of fair sampling in quantum annealing. Phys. Rev. A 100, https://doi.org/10.1103/PhysRevA.100.030303 (2019).

Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Pelofske, E. Comparing three generations of D-Wave quantum annealers for minor embedded combinatorial optimization problems. Quantum Science and Technology, 10, https://doi.org/10.1088/2058-9565/adb029 (2025).

Willsch, D. et al. Benchmarking advantage and D-Wave 2000Q quantum annealers with exact cover problems. Quantum Inf. Process. 21, 141 (2022).

ADS 
MathSciNet 
MATH 

Google Scholar
 

Morrell, Z. et al. Signatures of open and noisy quantum systems in single-qubit quantum annealing. Phys. Rev. Appl. 19, 034053 (2023).

ADS 
CAS 

Google Scholar
 

Grant, E., Humble, T. S. & Stump, B. Benchmarking quantum annealing controls with portfolio optimization. Phys. Rev. Appl. 15, 014012 (2021).

ADS 
CAS 

Google Scholar
 

Gilbert, V., Rodriguez, J. & Louise, S. Benchmarking quantum annealers with near-optimal minor-embedded instances. https://arxiv.org/html/2405.01378v1 (2024).

Boros, E. & Hammer, P. Pseudo-boolean optimization. Discret. Appl Math. 123, 155–225 (2002).

MathSciNet 
MATH 

Google Scholar
 

Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In: Proc. 7th Python in Science Conference SciPy’08, 11–15. https://www.osti.gov/biblio/960616 (2008).

Kernighan, B. W. & Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970).

MATH 

Google Scholar
 

Pelofske, E., Hahn, G., O’Malley, D., Djidjev, H. N. & Alexandrov, B. S. Quantum annealing algorithms for boolean tensor networks. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-12611-9 (2022).

Albash, T., Vinci, W., Mishra, A., Warburton, P. A. & Lidar, D. A. Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91, 042314 (2015).

ADS 

Google Scholar
 

IBM ILOG CPLEX. V12.10.0: User’s Manual for CPLEX. 46, 157 (International Business Machines Corporation, 2019).

Eén, N. & Sörensson, N. MiniSat solver. http://minisat.se (2023).

Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

ADS 
PubMed 

Google Scholar
 

D-Wave Systems. Simulated annealing D-Wave Github. https://github.com/dwavesystems/dwave-neal (2024).

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. https://www.gurobi.com (2024).