Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).
Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).
Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86 (2022).
Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).
Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
Europe’s floods top 2013 disaster bill according to Munich Re. news.com.au https://www.news.com.au/finance/europes-floods-top-2013-disaster-bill-according-to-munich-re/news-story/e7d8826d655a9a4a465211989750bace (2013).
Gaupp, F., Hall, J., Hochrainer-Stigler, S. & Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Change 10, 54–57 (2019).
Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2019).
Financial Management of Flood Risk (OECD, Publishing, 2016).
Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Change 12, 1160–1167 (2022).
Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).
Mondal, S., Mishra, K. A., Leung, R. & Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 14, 144 (2023).
Su, Z., Meyerhenke, H. & Kurths, J. The climatic interdependence of extreme-rainfall events around the globe. Chaos 32, 043126 (2022).
Ward, P. J. et al. Strong influence of El Nino Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).
Steptoe, H., Jones, S. E. O. & Fox, H. Correlations between extreme atmospheric hazards and global teleconnections: implications for multihazard resilience. Rev. Geophys. 56, 50–78 (2018).
Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).
Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).
Jiang, S., Tarasova, L., Yu, G. & Zscheischler, J. Compounding effects in flood drivers challenge estimates of extreme river floods. Sci. Adv. 10, eadl4005 (2024).
Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).
Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Han, J. et al. Streamflow seasonality in a snow-dwindling world. Nature 629, 1075–1081 (2024).
Berghuijs, W. R., Allen, S. T., Harrigan, S. & Kirchner, J. W. Growing spatial scales of synchronous river flooding in Europe. Geophys. Res. Lett. 46, 1423–1428 (2019).
Dai, P. & Nie, J. Robust expansion of extreme midlatitude storms under global warming. Geophys. Res. Lett. 49, e2022GL099007 (2022).
Yang, Y., Yang, L., Chen, X., Wang, Q. & Tian, F. Climate leads to reversed latitudinal changes in Chinese flood peak timing. Earth’s Future 10, e2022EF002726 (2022).
Richard, Y., Pohl, B. & Fauchereau, N. Influence of the Madden–Julian Oscillation on southern African summer rainfall. J. Clim. 20, 4227–4242 (2007).
Du, D. et al. Increase in MJO predictability under global warming. Nat. Clim. Change 14, 68–74 (2023).
Wang, J., He, J., Liu, X. & Wu, B. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chin. Sci. Bull. 54, 687–695 (2009).
Xu, B. & Li, G. A potential seasonal predictor for summer rainfall over eastern China: Spring Eurasian snowmelt. J. Clim. 37, 1999–2012 (2024).
McCabe, G. J. & Dettinger, M. D. Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeorol. 3, 13–25 (2002).
Rogers, J. C. & Van Loon, H. The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Weather Rev. 107, 509–519 (1979).
Beck, H. E. et al. Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci. 21, 2881–2903 (2017).
Frasson, R. P. d. M., Schumann, G. J. P., Kettner, A. J., Brakenridge, G. R. & Krajewski, W. F. Will the Surface Water and Ocean Topography (SWOT) satellite mission observe floods? Geophys. Res. Lett. 46, 10435–10445 (2019).
Yang, L., Wang, L., Li, X. & Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 23, 5133–5149 (2019).
Gudmundsson, L., Do, H. X., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment. Earth Syst. Sci. Data 10, 787–804 (2018).
Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).
Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).
Quian Quiroga, R., Kreuz, T. & Grassberger, P. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66, 041904 (2002).
Boyd, M. J. A storage-routing model relating drainage basin hydrology and geomorphology. Water Resour. Res. 14, 921–928 (1978).
Villarini, G. On the seasonality of flooding across the continental United States. Adv. Water Res. 87, 80–91 (2016).
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Tarasova, L. et al. A process‐based framework to characterize and classify runoff events: The event typology of Germany. Water Resour. Res. 56, e2019WR026951 (2020).
Kader, G. D. & Perry, M. Variability for categorical variables. J. Stat. Educ. 15, 2007 (2017).
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Use of the Information-Theoretic Approach 2nd edn (Springer, 2002).
Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).
Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley, 1998).
Yang, Y. et al. Synchronization of global peak river discharge since the 1980s. Figshare https://doi.org/10.6084/m9.figshare.26139493.v4 (2024).