10th Edition Committee IDA. International Diabetes Federation diabetes atlas 2021. https://diabetesatlas.org/atlas/tenth-edition/

Jing W, Lixin G. Diabetes atlas of China. Beijing: The People’s Medical Publishing House; 2022. ISBN: 978‑7‑117‑33661‑1. [In Chinese].

Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89. https://doi.org/10.1056/NEJMoa0806470.

Article 
CAS 
PubMed 

Google Scholar
 

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:83. https://doi.org/10.1186/s12933-018-0728-6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98:S1–115. https://doi.org/10.1016/j.kint.2020.06.019.

Article 

Google Scholar
 

Boggi U, Vistoli F, Andres A, Arbogast HP, Badet L, Baronti W, et al. First world consensus conference on pancreas transplantation: part II – recommendations. Am J Transpl. 2021;ajt16750. https://doi.org/10.1111/ajt.16750.

Myint TM, O’Shaughnessy DV, Marshall S, Vucak-Dzumhur M, Elder GJ. Health‐related quality of life of patients awaiting kidney and simultaneous pancreas–kidney transplants. Nephrology. 2013;18:827–32. https://doi.org/10.1111/nep.12160.

Article 
PubMed 

Google Scholar
 

Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61:827–37.

CAS 
PubMed 

Google Scholar
 

Gruessner AC. A decade of pancreas Transplantation—A registry report. Uro. 2023;3:132–50. https://doi.org/10.3390/uro3020015.

Article 

Google Scholar
 

Dean PG, Kukla A, Stegall MD, Kudva YC, Pancreas. transplantation 2017. https://doi.org/10.1136/bmj.j1321

Marx N, McGuire DK, Perkovic V, Woerle H-J, Broedl UC, von Eynatten M, et al. Composite primary end points in cardiovascular outcomes trials involving type 2 diabetes patients: should unstable angina be included in the primary end point? Diabetes Care. 2017;40:1144–51. https://doi.org/10.2337/dc17-0068.

Article 
PubMed 

Google Scholar
 

Yiannoullou P, Summers A, Goh SC, Fullwood C, Khambalia H, Moinuddin Z, et al. Major adverse cardiovascular events following simultaneous pancreas and kidney transplantation in the united Kingdom. Diabetes Care. 2019;42:665–73. https://doi.org/10.2337/dc18-2111.

Article 
PubMed 

Google Scholar
 

Tona F, Silvestre C, Rigato M, Famoso G, Marchini F, Bonfante L, et al. Coronary microvascular dysfunction predicts long-term outcome in simultaneous pancreas-kidney transplantation. Transpl Proc. 2016;48:344–8. https://doi.org/10.1016/j.transproceed.2015.12.048.

Article 
CAS 

Google Scholar
 

Montagud-Marrahi E, Molina-Andújar A, Pané A, Ramírez-Bajo MJ, Amor A, Esmatjes E, et al. Outcomes of pancreas transplantation in older diabetic patients. BMJ Open Diab Res Care. 2020;8:e000916. https://doi.org/10.1136/bmjdrc-2019-000916.

Article 
PubMed 
PubMed Central 

Google Scholar
 

US Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Diabetes Mellitus- Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. Silver Spring, MD: U.S Department of Health and Human Services, Food and Drug Administration; 2008. Available from: https://downloads.regulations.gov/FDA-2008-D-0118-0029/content.pdf. Accessed 20 May 2025.

Lindahl JP, Massey RJ, Hartmann A, Aakhus S, Endresen K, Günther A, et al. Cardiac assessment of patients with type 1 diabetes median 10 years after successful simultaneous pancreas and kidney transplantation compared with living donor kidney transplantation. Transplantation. 2017;101:1261. https://doi.org/10.1097/TP.0000000000001274.

Article 
PubMed 

Google Scholar
 

Montagud-Marrahi E, Molina-Andújar A, Pané A, Ruiz S, Amor AJ, Esmatjes E, et al. Impact of simultaneous Pancreas-kidney transplantation on cardiovascular risk in patients with diabetes. Transplantation. 2022;106:158–66. https://doi.org/10.1097/TP.0000000000003710.

Article 
CAS 
PubMed 

Google Scholar
 

Lindahl JP, Hartmann A, Aakhus S, Endresen K, Midtvedt K, Holdaas H, et al. Long-term cardiovascular outcomes in type 1 diabetic patients after simultaneous pancreas and kidney transplantation compared with living donor kidney transplantation. Diabetologia. 2016;59:844–52. https://doi.org/10.1007/s00125-015-3853-8.

Article 
CAS 
PubMed 

Google Scholar
 

Lange UG, Rademacher S, Zirnstein B, Sucher R, Semmling K, Bobbert P, et al. Cardiovascular outcomes after simultaneous pancreas kidney transplantation compared to kidney transplantation alone: A propensity score matching analysis. BMC Nephrol. 2021;22:347. https://doi.org/10.1186/s12882-021-02522-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ziaja J, Kolonko A, Kamińska D, Chudek J, Owczarek AJ, Kujawa-Szewieczek A, et al. Long-term outcomes of kidney and simultaneous pancreas-kidney transplantation in recipients with type 1 diabetes mellitus: Silesian experience. Transpl Proc. 2016;48:1681–6. https://doi.org/10.1016/j.transproceed.2016.01.082.

Article 
CAS 

Google Scholar
 

Kandaswamy R, Stock PG, Miller JM, Handarova D, Israni AK, Snyder JJ. OPTN/SRTR 2023 annual data report: pancreas. Am J Transpl. 2025;25:S138–92. https://doi.org/10.1016/j.ajt.2025.01.021.

Article 

Google Scholar
 

Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. 2024;9:262. https://doi.org/10.1038/s41392-024-01951-9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Chen X, Shi J, Du M, Li S, Pang J, et al. Relationship between triglyceride-glucose index baselines and trajectories with incident cardiovascular diseases in the elderly population. Cardiovasc Diabetol. 2024;23:6. https://doi.org/10.1186/s12933-023-02100-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Louie JZ, Shiffman D, McPhaul MJ, Melander O. Insulin resistance probability score and incident cardiovascular disease. J Intern Med. 2023;294:531–5. https://doi.org/10.1111/joim.13687.

Article 
CAS 
PubMed 

Google Scholar
 

Minh HV, Tien HA, Sinh CT, Thang DC, Chen C-H, Tay JC, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens (Greenwich Conn). 2021;23:529–37. https://doi.org/10.1111/jch.14155.

Article 
CAS 

Google Scholar
 

Vasques ACJ, Novaes FS, De Oliveira MDS, Matos Souza JR, Yamanaka A, Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93:e98–100. https://doi.org/10.1016/j.diabres.2011.05.030.

Article 
CAS 
PubMed 

Google Scholar
 

American Diabetes Association Professional Practice Committee. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care 2022;45:S144–74. https://doi.org/10.2337/dc22-S010

Tao L-C, Xu J, Wang T, Hua F, Li J-J. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21:68. https://doi.org/10.1186/s12933-022-01511-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu X, Tan Z, Huang Y, Zhao H, Liu M, Yu P, et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21:124. https://doi.org/10.1186/s12933-022-01546-0.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alizargar J, Bai C-H, Hsieh N-C, Wu S-FV. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc Diabetol. 2020;19:8. https://doi.org/10.1186/s12933-019-0982-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fridell JA, Stratta RJ. What does pancreas transplantation for type 2 diabetes even mean?? Don’t hype the type! transplantation 2022;106:1912–3. https://doi.org/10.1097/TP.0000000000004114

Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B. Kidney transplantation: the challenge of human leukocyte antigen and its therapeutic strategies. J Immunol Res. 2018;2018:5986740. https://doi.org/10.1155/2018/5986740.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Saad M, Nairooz R, Pothineni NVK, Almomani A, Kovelamudi S, Sardar P, et al. Long-Term outcomes with transcatheter aortic valve replacement in women compared with men: evidence from a Meta-Analysis. JACC Cardiovasc Interv. 2018;11:24–35. https://doi.org/10.1016/j.jcin.2017.08.015.

Article 
PubMed 

Google Scholar
 

Wang H, Zu Q, Tang H, Lu M, Chen R, Yang Z. Long-term cardiovascular outcomes of biodegradable polymer drug eluting stents in patients with diabetes versus non-diabetes mellitus: a meta-analysis. Cardiovasc Diabetol. 2023;22:228. https://doi.org/10.1186/s12933-023-01962-w.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun Q, Gao X, Wang H, Ko DS-C, Li XC. A new era for organ transplantation in China. Lancet (Lond Engl). 2014;383:1971–2. https://doi.org/10.1016/S0140-6736(14)60953-3.

Article 

Google Scholar
 

Huang J, Millis JM, Mao Y, Millis MA, Sang X, Zhong S. Voluntary organ donation system adapted to Chinese cultural values and social reality. liver transplant: off publ am assoc study liver dis. Int Liver Transpl Soc. 2015;21:419–22. https://doi.org/10.1002/lt.24069.

Article 

Google Scholar
 

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40:237–69. https://doi.org/10.1093/eurheartj/ehy462.

Article 
PubMed 

Google Scholar
 

Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/american stroke association. Stroke. 2013;44:2064–89. https://doi.org/10.1161/STR.0b013e318296aeca.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant: Off J Am Soc Transpl Am Soc Transpl Surg. 2009;9(Suppl 3):S1–155. https://doi.org/10.1111/j.1600-6143.2009.02834.x.

Article 

Google Scholar
 

Gruessner AC, Gruessner RWG. Pancreas transplantation for patients with type 1 and type 2 diabetes mellitus in the united states: a registry report. Gastroenterol Clin North Am. 2018;47:417–41. https://doi.org/10.1016/j.gtc.2018.01.009.

Article 
PubMed 

Google Scholar
 

Branch of Organ Transplantation,Chinese Medical Association; Branch of Organ Transplant Physicians, Chinese Medical Doctor Association. Chinese guidelines for pancreatic transplantation (2016 edition). Chinese Journal of Organ Transplantation. 2016;37(10):627–34. https://doi.org/10.3760/cma.j.issn.0254‑1785.2016.10.010. [in Chinese].

Branch of Organ Transplantation of Chinese Medical Association. Specification for follow-up after renal transplantation (2019 edition). Organ Transplantation. n.d.;6:667–71. https://doi.org/10.3969/j.issn.1674-7445.2019.06.006.

Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3347–51. https://doi.org/10.1210/jc.2010-0288.

Article 
CAS 
PubMed 

Google Scholar
 

Placzkowska S, Pawlik-Sobecka L, Kokot I, Piwowar A. Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomed Pap. 2019;163:187–99. https://doi.org/10.5507/bp.2019.021.

Article 

Google Scholar
 

Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034.

Article 
CAS 
PubMed 

Google Scholar
 

Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the R package Lcmm. J Stat Softw. 2017;78:1–56. https://doi.org/10.18637/jss.v078.i02.

Article 

Google Scholar
 

Nylund KL, Asparouhov T, Muthén BO. Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct Equ Model: Multidiscip J. 2007;14:535–69. https://doi.org/10.1080/10705510701575396.

Article 

Google Scholar
 

Nagin D. Group-based modeling of development. Harvard University Press; 2005. https://doi.org/10.4159/9780674041318.

Twisk JWR. Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. Eur J Epidemiol. 2004;19:769–76. https://doi.org/10.1023/b:ejep.0000036572.00663.f2.

Article 
PubMed 

Google Scholar
 

Ghisletta P, Renaud O, Jacot N, Courvoisier D. Linear mixed-effects and latent curve models for longitudinal life course analyses. In: Burton-Jeangros C, Cullati S, Sacker A, Blane D, editors. A life course perspective on health trajectories and transitions. Cham (CH): Springer; 2015.


Google Scholar
 

Collett D. Modelling survival data in medical research (3rd. ed.). Chapman & Hall/CRC. 2015. https://doi.org/10.1201/b18041.

Kim J, Schulman-Marcus J, Watkins AC, Feldman DN, Swaminathan R, Lee JB, et al. In-hospital cardiovascular complications after pancreas transplantation in the united States from 2003 to 2012. Am J Cardiol. 2017;120:682–7. https://doi.org/10.1016/j.amjcard.2017.05.038.

Article 
PubMed 

Google Scholar
 

Rosengren A, Dikaiou P. Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia. 2023;66:425–37. https://doi.org/10.1007/s00125-022-05857-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, et al. Long-term complications and mortality in young-onset diabetes. Diabetes Care. 2013;36:3863–9. https://doi.org/10.2337/dc12-2455.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang J, Zhan Q, Deng Z, Lin L, Feng Z, He H, et al. Does diabetes modify the triglyceride–glucose index associated with cardiovascular events and mortality? A meta-analysis of 50 cohorts involving 7,239,790 participants. Cardiovasc Diabetol. 2025;24:42. https://doi.org/10.1186/s12933-025-02585-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen L, Ding X-H, Fan K-J, Gao M-X, Yu W-Y, Liu H-L, et al. Association between triglyceride-glucose index and 2-year adverse cardiovascular and cerebrovascular events in patients with type 2 diabetes mellitus who underwent off-pump coronary artery bypass grafting. Diabetes Metab Syndr Obes: Targets Ther. 2022;15:439–50. https://doi.org/10.2147/DMSO.S343374.

Article 

Google Scholar
 

Xiong S, Chen Q, Zhang Z, Chen Y, Hou J, Cui C, et al. A synergistic effect of the triglyceride-glucose index and the residual SYNTAX score on the prediction of intermediate-term major adverse cardiac events in patients with type 2 diabetes mellitus undergoing percutaneous coronary intervention. Cardiovasc Diabetol. 2022;21:115. https://doi.org/10.1186/s12933-022-01553-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin XL, Li QY, Zhao DH, Liu JH, Fan Q. A high triglyceride-glucose index associated with adverse cardiovascular events in patients with type 2 diabetes mellitus and chronic total occlusion after percutaneous coronary intervention. J Invest Med. 2023;71:471–81. https://doi.org/10.1177/10815589231152823.

Article 

Google Scholar
 

Tai S, Fu L, Zhang N, Zhou Y, Xing Z, Wang Y. Impact of baseline and trajectory of triglyceride-glucose index on cardiovascular outcomes in patients with type 2 diabetes mellitus. Front Endocrinol. 2022;13:858209. https://doi.org/10.3389/fendo.2022.858209.

Article 

Google Scholar
 

Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60. https://doi.org/10.1016/j.redox.2018.09.025.

Article 
CAS 
PubMed 

Google Scholar
 

Molina MN, Ferder L, Manucha W. Emerging role of nitric oxide and heat shock proteins in insulin resistance. Curr Hypertens Rep. 2016;18:1. https://doi.org/10.1007/s11906-015-0615-4.

Article 
CAS 
PubMed 

Google Scholar
 

Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12:144–53. https://doi.org/10.1038/nrendo.2015.216.

Article 
CAS 
PubMed 

Google Scholar
 

Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JWN. Platelet tissue factor synthesis in type 2 diabetic patients is resistant to Inhibition by insulin. Diabetes. 2010;59:1487–95. https://doi.org/10.2337/db09-1008.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sharif A, Baboolal K. Risk factors for new-onset diabetes after kidney transplantation. Nat Rev Nephrol. 2010;6:415–23. https://doi.org/10.1038/nrneph.2010.66.

Article 
PubMed 

Google Scholar
 

Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transpl. 2002;2:807–18. https://doi.org/10.1034/j.1600-6143.2002.20902.x.

Article 
CAS 

Google Scholar
 

Subramanian S, Trence DL. Immunosuppressive agents: effects on glucose and lipid metabolism. Endocrinol Metab Clin North Am. 2007;36:891–905; vii. https://doi.org/10.1016/j.ecl.2007.07.003

Yan J, Yang X, Wang J, Cai H, Che X, Ying L, et al. Metabolic risk profile and graft function deterioration 2 years after kidney transplant. JAMA Netw Open. 2023;6:e2349538. https://doi.org/10.1001/jamanetworkopen.2023.49538.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Porrini E, Delgado P, Bigo C, Alvarez A, Cobo M, Checa MD, et al. Impact of metabolic syndrome on graft function and survival after cadaveric renal transplantation. Am J Kidney Dis: Off J Natl Kidney Found. 2006;48:134–42. https://doi.org/10.1053/j.ajkd.2006.04.078.

Article 

Google Scholar
 

Ying T, Shi B, Kelly PJ, Pilmore H, Clayton PA, Chadban SJ. Death after kidney transplantation: an analysis by era and time post-transplant. J Am Soc Nephrol: JASN. 2020;31:2887–99. https://doi.org/10.1681/ASN.2020050566.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jardine AG, Gaston RS, Fellstrom BC, Holdaas H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet (Lond Engl). 2011;378:1419–27. https://doi.org/10.1016/S0140-6736(11)61334-2.

Article 

Google Scholar
 

Gruessner AC, Gruessner RWG. Long-term outcome after pancreas transplantation: a registry analysis. Curr Opin Organ Transpl. 2016;21:377–85. https://doi.org/10.1097/MOT.0000000000000331.

Article 

Google Scholar
 

Tomimaru Y, Kobayashi S, Ito T, Sasaki K, Iwagami Y, Yamada D, et al. Different timing and risk factors of cause-specific pancreas graft loss after simultaneous pancreas kidney transplantation. Sci Rep. 2022;12:17666. https://doi.org/10.1038/s41598-022-22321-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hau H-M, Jahn N, Brunotte M, Lederer AA, Sucher E, Rasche FM, et al. Short and long-term metabolic outcomes in patients with type 1 and type 2 diabetes receiving a simultaneous pancreas kidney allograft. BMC Endocr Disord. 2020;20:30. https://doi.org/10.1186/s12902-020-0506-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Drognitz O, Benz S, Pfeffer F, Fischer C, Makowiec F, Schareck W, et al. Long-term follow-up of 78 simultaneous pancreas-kidney transplants at a single-center institution in Europe. : Transplantation. 2004;78:1802–8. https://doi.org/10.1097/01.TP.0000147789.06043.A6.

Article 
PubMed 

Google Scholar