Dalzell, A. M. et al. Quantum Algorithms: A Survey of Applications and End-to-End Complexities (Cambridge Univ. Press, 2025).

Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. Preprint at https://arxiv.org/abs/2211.07629 (2022).

Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

Article 

Google Scholar
 

Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/0904.2557 (2010).

Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14, 1338–1372 (2013).

MathSciNet 

Google Scholar
 

Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

Bravyi, S. B. & Kitaev, A. Y. D. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).

Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

Article 
ADS 
MathSciNet 

Google Scholar
 

Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

Article 
ADS 
MathSciNet 

Google Scholar
 

Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).

Article 

Google Scholar
 

Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

Article 
ADS 

Google Scholar
 

Cain, M. et al. Correlated decoding of logical algorithms with transversal gates. Phys. Rev. Lett. 133, 240602 (2024).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

Article 

Google Scholar
 

Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).

Article 
ADS 
PubMed 

Google Scholar
 

Raussendorf, R. Quantum computation via translation-invariant operations on a chain of qubits. Phys. Rev. A 72, 052301 (2005).

Article 
ADS 
MathSciNet 

Google Scholar
 

Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead fault-tolerant quantum computing using long-range connectivity. Sci. Adv. 8, eabn1717 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, Q. et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat. Phys. 20, 1084–1090 (2024).

Article 
CAS 

Google Scholar
 

Yamasaki, H. & Koashi, M. Time-efficient constant-space-overhead fault-tolerant quantum computation. Nat. Phys. 20, 247–253 (2024).

Article 
CAS 

Google Scholar
 

Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tremblay, M. A., Delfosse, N. & Beverland, M. E. Constant-overhead quantum error correction with thin planar connectivity. Phys. Rev. Lett. 129, 050504 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Bombín, H. Single-shot fault-tolerant quantum error correction. Phys. Rev. X 5, 031043 (2015).


Google Scholar
 

Campbell, E. T. A theory of single-shot error correction for adversarial noise. Quantum Sci. Technol. 4, 025006 (2019).

Article 
ADS 

Google Scholar
 

Beverland, M. E., Kubica, A. & Svore, K. M. Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes. PRX Quantum 2, 020341 (2021).

Article 
ADS 

Google Scholar
 

Delfosse, N. & Paetznick, A. Spacetime codes of Clifford circuits. Preprint at https://arxiv.org/abs/2304.05943 (2023).

Gidney, C. Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021).

Article 

Google Scholar
 

Gottesman, D. Opportunities and challenges in fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/2210.15844 (2022).

Cai, Z., Siegel, A. & Benjamin, S. Looped pipelines enabling effective 3D qubit lattices in a strictly 2D device. PRX Quantum 4, 020345 (2023).

Article 
ADS 

Google Scholar
 

Duckering, C., Baker, J. M., Schuster, D. I. & Chong, F. T. Virtualized logical qubits: a 2.5D architecture for error-corrected quantum computing. In Proc. Annual International Symposium on Microarchitecture (MICRO) 173–185 (IEEE, 2020).

Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

Article 
ADS 
MathSciNet 

Google Scholar
 

Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://arxiv.org/abs/2208.01863 (2022).

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

Article 
ADS 
PubMed 

Google Scholar
 

Jochym-O’Connor, T., Kubica, A. & Yoder, T. J. Disjointness of stabilizer codes and limitations on fault-tolerant logical gates. Phys. Rev. X 8, 021047 (2018).


Google Scholar
 

Li, Y. A magic state’s fidelity can be superior to the operations that created it. New J. Phys. 17, 023037 (2015).

Article 
ADS 

Google Scholar
 

Haah, J. What is your logical qubit. In Proc. Simons Institute Workshop on Advances in Quantum Coding Theory (Simons Institute for the Theory of Computing, 2024).

Cain, M. et al. Fast correlated decoding of transversal logical algorithms. Preprint at https://arxiv.org/abs/2505.13587 (2025).

Serra-Peralta, M., Shaw, M. H. & Terhal, B. M. Decoding across transversal Clifford gates in the surface code. Preprint at https://arxiv.org/abs/2505.13599 (2025).

Kovalev, A. A. & Pryadko, L. P. Fault tolerance of quantum low-density parity check codes with sublinear distance scaling. Phys. Rev. A 87, 020304 (2013).

Article 
ADS 

Google Scholar
 

Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T. & Campbell, E. T. Improved decoding of circuit noise and fragile boundaries of tailored surface codes. Phys. Rev. X 13, 031007 (2023).

CAS 

Google Scholar
 

Gurobi Optimization. Gurobi Optimizer Reference Manual (Gurobi Optimization, 2024).

Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).

Article 
CAS 

Google Scholar
 

Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery. Preprint at https://arxiv.org/abs/1808.06709 (2018).

Turner, M. L., Campbell, E. T., Crawford, O., Gillespie, N. I. & Camps, J. Scalable decoding protocols for fast transversal logic in the surface code. Preprint at https://arxiv.org/abs/2505.23567 (2025).

Fowler, A. G. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time. Quantum Inf. Comput.15, 145–158 (2015).

MathSciNet 

Google Scholar
 

Duclos-Cianci, G. & Poulin, D. Fast decoders for topological quantum codes. Phys. Rev. Lett. 104, 050504 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

Article 
ADS 

Google Scholar
 

Tillich, J. P. & Zemor, G. Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60, 1193–1202 (2014).

Article 
ADS 
MathSciNet 

Google Scholar
 

Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In Proc. Annual ACM Symposium on Theory of Computing 375–388 (IEEE, 2022).

Fawzi, O., Grospellier, A. & Leverrier, A. Constant overhead quantum fault-tolerance with quantum expander codes. In Proc. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) 743–754 (IEEE, 2018).

Gu, S. et al. Single-shot decoding of good quantum LDPC codes. Commun. Math. Phys. 405, 85 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Kubica, A., Yoshida, B. & Pastawski, F. Unfolding the color code. New J. Phys. 17, 083026 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bombin, H. Transversal gates and error propagation in 3D topological codes. Preprint at https://arxiv.org/abs/1810.09575 (2018).

Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (1999).

Article 
MathSciNet 

Google Scholar
 

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

Pattison, C. A., Krishna, A. & Preskill, J. Hierarchical memories: simulating quantum LDPC codes with local gates. Quantum 9, 1728 (2025).

Article 

Google Scholar
 

Bravyi, S., Gosset, D., König, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).

Article 
CAS 

Google Scholar
 

Moussa, J. E. Transversal Clifford gates on folded surface codes. Phys. Rev. A 94, 042316 (2016).

Article 
ADS 

Google Scholar
 

Breuckmann, N. P. & Burton, S. Fold-transversal Clifford gates for quantum codes. Quantum 8, 1372 (2024).

Article 

Google Scholar
 

Quintavalle, A. O., Webster, P. & Vasmer, M. Partitioning qubits in hypergraph product codes to implement logical gates. Quantum 7, 1153 (2023).

Article 

Google Scholar
 

Bombín, H. et al. Modular decoding: parallelizable real-time decoding for quantum computers. Preprint at https://arxiv.org/abs/2303.04846 (2023).

Higgott, O. & Breuckmann, N. P. Improved single-shot decoding of higher-dimensional hypergraph-product codes. PRX Quantum 4, 020332 (2023).

Article 
ADS 

Google Scholar
 

Landahl, A. J., Anderson, J. T. & Rice, P. R. Fault-tolerant quantum computing with color codes. Preprint at https://arxiv.org/abs/1108.5738 (2011).

Bravyi, S. & Cross, A. Doubled color codes. Preprint at https://arxiv.org/abs/1509.03239 (2015).

Bacon, D., Flammia, S. T., Harrow, A. W. & Shi, J. Sparse quantum codes from quantum circuits. In Proc. Forty-Seventh Annual ACM Symposium on Theory of Computing 327–334 (ACM, 2014).

Aliferis, P., Gottesman, D. & Preskill, J. Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8, 181–244 (2008).

MathSciNet 

Google Scholar
 

Lao, L. & Criger, B. Magic state injection on the rotated surface code. In Proc. 19th ACM International Conference on Computing Frontiers 113–120 (ACM, 2022).

Gidney, C. Cleaner magic states with hook injection. Preprint at https://arxiv.org/abs/2302.12292 (2023).

Vasmer, M. & Browne, D. E. Three-dimensional surface codes: transversal gates and fault-tolerant architectures. Phys. Rev. A 100, 012312 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Brown, B. J. A fault-tolerant non-Clifford gate for the surface code in two dimensions. Sci. Adv. 6, 4929–4951 (2020).

Article 
ADS 

Google Scholar
 

Zhu, G., Sikander, S., Portnoy, E., Cross, A. W. & Brown, B. J. Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries. Preprint at https://arxiv.org/abs/2310.16982 (2023).

Bravyi, S., Smith, G. & Smolin, J. A. Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016).


Google Scholar
 

Yoganathan, M., Jozsa, R. & Strelchuk, S. Quantum advantage of unitary Clifford circuits with magic state inputs. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20180427 (2018).

ADS 
MathSciNet 

Google Scholar
 

Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).

Article 

Google Scholar
 

Cuccaro, S. A., Draper, T. G., Kutin, S. A. & Moulton, D. P. A new quantum ripple-carry addition circuit. Preprint at https://arxiv.org/abs/quant-ph/0410184 (2004).

Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

CAS 

Google Scholar
 

Fowler, A. G. Time-optimal quantum computation. Preprint at https://arxiv.org/abs/1210.4626 (2012).

Litinski, D. & Nickerson, N. Active volume: an architecture for efficient fault-tolerant quantum computers with limited non-local connections. Preprint at https://arxiv.org/abs/2211.15465 (2022).

Knill, E. Quantum computing with very noisy devices. Nature 434, 39–44 (2004).

Article 
ADS 

Google Scholar
 

Gidney, C. & Fowler, A. G. Flexible layout of surface code computations using AutoCCZ states. Preprint at https://arxiv.org/abs/1905.08916 (2019).

Bravyi, S. & Haah, J. Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012).

Article 
ADS 

Google Scholar
 

Kubica, A. & Vasmer, M. Single-shot quantum error correction with the three-dimensional subsystem toric code. Nat. Commun. 13, 6272 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

Article 
ADS 

Google Scholar
 

Wootton, J. R. & Loss, D. High threshold error correction for the surface code. Phys. Rev. Lett. 109, 160503 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Fowler, A. G. Optimal complexity correction of correlated errors in the surface code. Preprint at https://arxiv.org/abs/1310.0863 (2013).

Delfosse, N., Londe, V. & Beverland, M. E. Toward a union-find decoder for quantum LDPC codes. IEEE Trans. Inf. Theory 68, 3187–3199 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Panteleev, P. & Kalachev, G. Degenerate quantum LDPC codes with good finite length performance. Quantum 5, 585 (2019).

Article 

Google Scholar
 

Wu, Y., Zhong, L. & Puri, S. Hypergraph minimum-weight parity factor decoder for QEC. In Proc. 2024 APS March Meeting (American Physical Society, 2024).

Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2013).

Article 
MathSciNet 

Google Scholar
 

Liyanage, N., Wu, Y., Deters, A. & Zhong, L. Scalable quantum error correction for surface codes using FPGA. In Proc. 31st IEEE International Symposium on Field-Programmable Custom Computing Machine (FCCM) 217 (IEEE, 2023).

Richardson, T. & Urbanke, R. Modern Coding Theory (Cambridge Univ. Press, 2008).

Wu, Y. & Zhong, L. Fusion Blossom: fast MWPM decoders for QEC. In Proc. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 928–938 (IEEE, 2023).

Grospellier, A. Constant Time Decoding of Quantum Expander Codes and Application to Fault-Tolerant Quantum Computation. PhD thesis, Sorbonne Univ. (2019).

Tan, X., Zhang, F., Chao, R., Shi, Y. & Chen, J. Scalable surface-code decoders with parallelization in time. PRX Quantum 4, 040344 (2023).

Article 
ADS 

Google Scholar
 

Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I. & Campbell, E. T. Parallel window decoding enables scalable fault tolerant quantum computation. Nat. Commun. 14, 7040 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bartolucci, S. et al. Switch networks for photonic fusion-based quantum computing. Preprint at https://arxiv.org/abs/2109.13760 (2021).

Zhou, H. et al. Data for “Low-Overhead Transversal Fault Tolerance for Universal Quantum Computation”. Zenodo https://doi.org/10.5281/zenodo.16552626 (2025).