Abdelaziz AA, Kamer AMA, Al-Monofy KB, et al. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: its production and biological activities. Microb Cell Fact. 2023;22:110.
Sundararajan P, Ramasamy SP. Current perspectives on industrial application of microbial carotenoid as an alternative to synthetic pigments. Sustainable Chem Pharm. 2024;37:101353.
Kamer AMA, Abdelaziz AA, Al-Monofy KB, et al. Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC Microbiol. 2023;23:116.
Vatanyoopaisarn S, Visessaguan W, Thumthanarak B, Uttapap D, Mussatto SI, Rungsardthong V. Screening, identification, and characterization of high potential bacteria for ꞵ-cryptoxanthin production from natural sources. Biocatal Agric Biotechnol. 2024;57:103089.
Viera I, Pérez-Gálvez A, Roca M. Green Nat Colorants Molecules. 2019;24:154.
Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L. Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended Hue range. Food Res Int. 2014;65:156–62.
Rajendran P, Somasundaram P, Dufossé L. Microbial pigments: Eco-friendly extraction techniques and some industrial applications. J Mol Struct. 2023;1290:135958.
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv. 2023. p. 108150.
Venkatachalam M. Pigment production using submerged fermentation. Fermentation. 2024;10:91.
Fathi Z. Microbial production of β-Carotene. Microb Prod Food Bioactive Compd. 2025. p. 1–37.
Huang X, Gan L, He Z, Jiang G, He T. Bacterial pigments as a promising alternative to synthetic colorants: from fundamentals to applications. J Microbiol Biotechnol. 2024;34(11):2153.
Mussagy CU, Caicedo-Paz AV, Farias FO, Tropea A, La Tella R, Guzmán-Flores JM, Dufosse L. Comparative analysis of bacterial and microalgal natural astaxanthin: part I—Focus on composition, molecular interactions, antioxidant activities, physicochemical and biological functions. Algal Res. 2025;85:103862.
Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74:1–16.
Langi P, Kiokias S, Varzakas T, Proestos C, Carotenoids. From plants to food and feed industries. Methods Mol Biol. 2018;1852:57–71.
Stephen NM, Gayathri R, Niranjana R, Prasad Y, Das AK, Baskaran V, Ganesan P. Carotenoids: types, sources, and biosynthesis. Plant Secondary Metabolites. 2017;2:103–32. Apple Academic Press.
Ashokkumar V, Flora G, Sevanan M, Sripriya R, Chen WH, Park J, Rajesh J, Kumar G. Technological advances in the production of carotenoids and their Applications—A critical review. Bioresour Technol. 2023;367:128215.
Devassy E, Rebello S, Puthur S, AN A, Aneesh EM, Sindhu R, Pandey A. Bacterial pigments in food production-associated advantages and disadvantages. Chetana: Ivanian J Sci Res. 2024. p. 1–5.
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful Tale of cryosphere with wide range applications. Extremophiles. 2020;24:447–73.
Qi DD, Jin J, Liu D, Jia B, Yuan YJ. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of Astaxanthin in yeast. Microb Cell Factories. 2020;19:1–12.
Quintana-López A, Hernández C, Palacios E, Manzano-Sarabia M, Hurtado-Oliva MA. Do by-products derived from farmed and wild shrimp contain the same quantities of astaxanthin? J Crustac Biol. 2021;41:ruab065.
Zhang DF, Wang HC, Shi S, Li TP, Guo DY, Yang ZW, Li WJ. Characterization of Sphingomicrobium aquimarinum sp. nov. and Sphingomicrobium maritimum sp. nov. Highlights astaxanthin-producing bacteria in the family Sphingomonadaceae. Syst Appl Microbiol. 2025. p.126624.
Zhuo Y, Jin CZ, Lee CS, Shin KS, Lee HG. Comparative genomics and evolutionary insights into Zeaxanthin biosynthesis in two novel flavobacterium species. BMC Microbiol. 2025;25:240.
Devi M, Ramakrishnan E, Deka S, Parasar DP. Bacteria as a source of biopigments and their potential applications. J Microbiol Methods. 2024;219:106907.
Chen L, Wu J, Zhang S, Liu X, Zhao M, Guo W, Zhang J, Chen W, Liu Z, Deng M, et al. Occurrence and diversity of fungi and their Mycotoxin production in common edible and medicinal substances from China. J Fungi. 2025;11(3):212.
Al-Monofy KB, Abdelaziz AA, Abo-Kamar AM, et al. Coating silicon catheters with the optimized and stable carotenoid bioproduct from Micrococcus luteus inhibited the biofilm formation by multidrug-resistant Enterococcus faecalis via downregulation of GelE gene expression. Microb Cell Fact. 2025;24:186.
Karacaoğlu B, Koçer AT, İnan B, Bütün İ, Mercimek R, Ghorbani M. Balkanlı, D. Microfluidic chip-assisted separation process and post-chip microalgae cultivation for carotenoid production. J Appl Phycol. 2025;37(1):35–53.
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A. Kopsahelis, N. Natural carotenoids: recent advances on separation from microbial biomass and methods of analysis. Antioxidants. 2023;12(5):1030.
Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods. 2020;67:103867.
López GD, Álvarez-Rivera G, Carazzone C, Ibáñez E, Leidy C, Cifuentes A. Bacterial carotenoids: extraction, characterization, and applications. Crit Rev Anal Chem. 2023;53(6):1239–62.
Gupta P, Sreelakshmi Y, Sharma R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods. 2015;11(1):5.
Rodriguez-Amaya D, Kimura M. HarvestPlus handbook for carotenoid analysis. Washington: HarvestPlus; 2004. ISBN 978-953-307-683-6.
Mendes-Silva TDCD, da Silva Andrade RF, Ootani MA, Mendes PVD, da Silva MRF, Souza KS, de Oliveira M. B. M. Biotechnological potential of carotenoids produced by extremophilic microorganisms and application prospects for the cosmetics industry. Adv Microbiol. 2020;10(8):397–410.
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and some other pigments from fungi and yeasts. Metabolites. 2021;11(2):92.
Srivastava R, Physicochemical. Antioxidant properties of carotenoids and its optoelectronic and interaction studies with chlorophyll pigments. Sci Rep. 2021;11:18365.
Grivard A, Goubet I, Duarte Filho LMDS, Thiéry V, Chevalier S, de Oliveira-Junior RG. Picot, L. Archaea carotenoids: natural pigments with unexplored innovative potential. Mar Drugs. 2022;20(8):524.
Sangari FJ, Perez-Gil J, Carretero-Paulet L, Garcia-Lobo JM, Rodriguez-Concepcion M. A new family of enzymes catalyzing the first committed step of the Methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci U S A. 2010;107:14081–6.
Córdova P et al. Microbiological synthesis of carotenoids: Pathways and regulation. Progress in carotenoid research. IntechOpen;2018.
Paniagua-Michel J, Olmos-Soto J, Ruiz MA. Pathways of carotenoid biosynthesis in bacteria and microalgae. Microb Carotenoids Bacteria Microalgae: Methods Protocols. 2012. p. 1–12.
McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta (BBA)-Biomembr. 2007;1768:167–74.
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: biotechnological aspects. Biotechnol Adv. 2021;50:107768.
Asker D, Awad TS, Beppu T, Ueda K. Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. Microb Carotenoids Bacteria Microalgae: Methods Protocols. 2012. p. 21–60.
Nosair AM, Abdelaziz AA, Abo-Kamer AM, Al-Madboly LA, Farghali MH. Nutritional optimization for bioprocess production of Staphyloxanthin from Staphylococcus aureus with response surface methodology: promising anticancer scaffold targeting EGFR Inhibition. Microb Cell Fact. 2025;24(1):99.
Takatani N, Maoka T, Sawabe T, Beppu F, Hosokawa M. Identification of a novel monocyclic carotenoid and prediction of its biosynthetic genes in algoriphagus sp. oki45. Appl Microbiol Biotechnol. 2024;108(1):102.
Jin CZ, Park SY, Kim CJ, Shin KS, Lee JM. Sphingomonas arvum sp. nov.: A promising microbial chassis for high-yield and sustainable Zeaxanthin biomanufacturing. Microbiol Res. 2025;290:127938.
Abubakar H, Astuti RI, Batubara I, Listiyowati S, Wahyudi AT. Investigating antioxidant activity of carotenoid compound from paracoccus haeundaensis SAB E11 at the cellular level in Schizosaccharomyces Pombe ARC039 yeast model. J Appl Pharm Sci. 2025;15(3):183–93.
Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Mohan Rao C, Shivaji S. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol. 2000;173:418–24.
Silva C, Cabral JMS, Van Keulen F. Isolation of a β-carotene over-producing soil bacterium, Sphingomonas Sp. Biotechnol Lett. 2004;26:257–62.
Bhosale P, Bernstein PS. β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and Urea. J Ind Microbiol Biotechnol. 2004;31(12):565–71.
Wusqy NK, Limantara lK, Exploration FF. Isolation and quantification of β-carotene from bacterial symbion of Acropora sp. Microbiol Indonesia. 2014; 8(2):3.
Ibrahim HAH. Antibacterial carotenoids of three Holothuria species in Hurghada, Egypt. Egypt J Aquat Res. 2012;38(3):185–94.
Rostami H, Hamedi H, Yolmeh M. Some biological activities of pigments extracted from Micrococcus roseus (PTCC 1411) and Rhodotorula glutinis (PTCC 5257). Int J ImmunoPathol Pharmacol. 2016;29(4):684–95.
Trivedi N, Tandon S, Dubey A. Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. Afr J Biotechnol. 2017;16(27):1507–12.
Lopes G, Clarinha D, Vasconcelos V. Carotenoids from cyanobacteria: a biotechnological approach for the topical treatment of psoriasis. Microorganisms. 2020;8(2):302.
Jinendiran S, Dahms HU, Kumar BD, Ponnusamy VK. Sivakumar, N. Diapolycopenedioic-acid-diglucosyl ester and keto-myxocoxanthin glucoside ester: novel carotenoids derived from Exiguobacterium acetylicum S01 and evaluation of their anticancer and anti-inflammatory activities. Bioorg Chem. 2020;103:104149.
Pankratov TA, Grouzdev DS, Patutina EO, Kolganova TV, Suzina NE, Berestovskaya JJ. Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales. Antonie Van Leeuwenhoek. 2020;113:477–89.
Patki JM, Singh S, Singh S, Padmadas N, Dasgupta D. Analysis of the applicative potential of pigments extracted from bacterial isolates of Mangrove soil as topical UV protectants. Brazilian J Pharm Sci. 2021;57:e19127.
Eroglu A, Al’Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and their health benefits as derived via their interactions with gut microbiota. Adv Nutr. 2023;14(2):238–55.
Jiang L, Peng Y, Kim KH, Jeon D, Han AR, Kim CY, Lee J. Jeongeuplla avenae gen. nov., sp. nov., a novel β-carotene-producing bacterium that alleviates salinity stress in Arabidopsis. Front Microbiol. 2023;14:1265308.
Hagaggi NSA, Abdul-Raouf UM. Production of bioactive β-carotene by the endophytic bacterium Citricoccus parietis AUCs with multiple in vitro biological potentials. Microb Cell Fact. 2023;22(1):90.
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial pigments: major groups and industrial applications. Microorganisms. 2023;11(12):2920.
Yokoyama A, Miki W, Izumida H, Shizuri Y. New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotechnol Biochem. 1996;60:200–3.
Tsubokura A, Yoneda H, Mizuta H. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative Astaxanthin producing bacterium. Int J Syst Bacteriol. 1999;49(1):277–82.
Asker D, Isaka K. Production of Astaxanthin by microorganisms. Japan Patent Office. 2006;340676A.
Osanjo GO, Muthike EW, Tsuma L, Okoth MW, et al. A salt lake extremophile, Paracoccus bogoriensis sp. nov., Ef Fi ciently produces xanthophyll carotenoids. Afr J Microbiol Res. 2009;8:426–33.
Kirti K, Amita S, Priti S, Mukesh Kumar A, Jyoti S. Colorful world of microbes: carotenoids and their applications. Adv Biol. 2014. p. 1–13.
Liu H, Zhang C, Zhang X, Tan K, Zhang H, Cheng D, Zheng H. A novel carotenoids-producing marine bacterium from noble scallop Chlamys nobilis and antioxidant activities of its carotenoid compositions. Food Chem. 2020;320:126629.
Foong LC, Loh CWL, Ng HS, Lan JC. W. Recent development in the production strategies of microbial carotenoids. World J Microbiol Biotechnol. 2021;37:1–11.
Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M. Joshi, N. C. Bacterial pigments and their multifaceted roles in contemporary biotechnology and Pharmacological applications. Microorganisms. 2023;11(3):614.
Lagarde D, Beuf L, Vermaas W. Increased production of Zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol. 2000;66:64–72.
Asker D. High throughput screening and profiling of highvalue carotenoids from a wide diversity of bacteria in surface seawater. Food Chem. 2018;261:103–11.
Rowles JL, Erdman JW. Carotenoids and their role in cancer prevention. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158613.
Patthawaro S, Lomthaisong K, Saejung C. Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valoriz. 2020;11:2375–86.
Veiga-Crespo P, Blasco L, Rosa-Dos-Santos F, Poza M, Villa TG. Influence of culture conditions of Gordonia Jacobaea MV-26 on canthaxanthin production. Int Microbiol. 2005;8:55–8.
Gharibzahedi SMT, Razavi SH, Mousavi M. Feeding strategies for the improved biosynthesis of canthaxanthin from enzymatic hydrolyzed molasses in the Fed-Batch fermentation of Dietzia Natronolimnaea HS-1. Bioresour Technol. 2014;154:51–8.
Silva TRE, Silva LCF, de Queiroz AC, Moreira A, de Carvalho Fraga MS, de Menezes CA. Duarte, A. W. F. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol. 2021;41(6):809–26.
Takaichi S, Shimada K, Ishidsu JI. Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol. 1990;153:118–22.
Guyomarch F, Binet A, Dufosse L. Production of carotenoids by Brevibacterium lines: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotech. 2000;24:64–70.
Kokerd S, Vatanyoopaisarn S, Visessaguan W, Thumthanarak B, Uttapap D, Mussatto SI, Rungsardthong V. Screening, identification, and characterization of high potential bacteria for-cryptoxanthin production from natural sources. Biocatal Agric Biotechnol. 2024.p. 103089.
Miller JK, Harrison MT, D’Andrea A, Endsley AN, Yin F, Kodukula K, Watson DS. β-Carotene biosynthesis in probiotic bacteria. Probiotics Antimicrob Proteins. 2013;5:69–80.
Yang J, Guo L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact. 2014;13:1–11.
Misawa N, Yamano SH, I. G. E. Y. U. K. I., Ikenaga HI. R. O. S. H. I. Production of beta-carotene in zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from erwinia Uredovora. Appl Environ Microbiol. 1991;57(6):1847–9.
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: new insights and synthetic approaches. Front Plant Sci. 2023;13:1072061.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol. 2014;98:4355–68.
Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF. Carotenoid production by recombinant Corynebacterium glutamicum: strain construction, cultivation, extraction, and quantification of carotenoids and terpenes. Microb Carotenoids: Methods Protocols. 2018. p. 127–41.
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metabolic Eng Commun. 2020;10:e00118.
Su A, Chi S, Li Y, Tan S, Qiang S, Chen Z, et al. Metabolic redesign of Rhodobacter sphaeroides for lycopene production. J Agric Food Chem. 2018;66:5879–85.
Igreja WS, Maia FDA, Lopes AS, Chisté RC. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. Int J Mol Sci. 2021;22(16):8819.
Czitrom V. One-factor-at-a-time versus designed experiments. Am Stat. 1999;53(2):126–31.
Rezaeeyan Z, Safarpour A, Amoozegar MA, Babavalian H, Tebyanian H, Shakeri F. High carotenoid production by a halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid. EXCLI J. 2017;16:840.
Filluelo O, Ferrando J, Picart P. Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C30-carotenoids. AMB Express. 2023;13(1):38.
Kandasamy GD, Kathirvel P. Production, characterization and in vitro biological activities of crude pigment from endophytic Micrococcus luteus associated with Avicennia Marina. Arch Microbiol. 2024;206(1):26.
Naik R, Gupte S. Optimization of media components for enhanced carotenoid production by paracoccus marcusii RSPO1 and assessment of their cytotoxicity against A549 and Vero cells. Prep Biochem Biotechnol. 2024;54(6):764–78.
Hwang CY, Cho ES, Kim S, Kim K, Seo MJ. Optimization of Bacterioruberin production from halorubrum ruber and assessment of its antioxidant potential. Microb Cell Fact. 2024;23(1):2.
Maharjan A, Kim BS. Enhanced production of Astaxanthin and Zeaxanthin by paracoccus Sp. LL1 through random mutagenesis. Biotechnol Appl Chem. 2025.
Fatima, Meraj KA. Isolation, Characterization, and optimization studies of bacterial pigments. J Pure Appl Microbiol. 2022;16(2).
Braunwald T, Schwemmlein L, Graeff-hönninger S, French WT, Hernandez R, Holmes WE. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol. 2013;97:6581–8.
Mezzomo N, Ferreira SRS. Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem. 2016.
Guo X, Li X, Xiao D. Optimization of culture conditions for production of astaxanthin by Phaffia rhodozyma. In: 4th international conference on bioinformatics and biomedical engineering. Chengdu, China. 2010. p. 1–4.
Taratynova MO, Tarasov IM, Fedyaeva IM, Dementev DA, Gorchakova VA, Tarasova MA, Yuzbasheva EY. A Two-Step process for converting methane to canthaxanthin using Methylococcus capsulatus (Bath) biomass and engineered Yarrowia lipolytica. Biotechnol J. 2025;20(6):e70043.
Cardoso LAC, Jäckel S, Karp SG, Framboisier X, Chevalot I, Marc I. Improvement of Sporobolomyces ruberrimus carotenoids production by the use of Raw glycerol. Bioresour Technol. 2016;200:374–9.
Stoklosa RJ, Johnston DB, Nghiem NP. Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for Astaxanthin generation. Process Biochem. 2019;83:9–17.
Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W. Identification of newly Zeaxanthin-Producing bacteria isolated from sponges in the Gulf of Thailand and their Zeaxanthin production. Appl Biochem Biotechnol. 2012;167:2357–68.
Raita S, et al. Microbial carotenoids production: strains, conditions, and yield affecting factors. Rigas Tehniskas Universitates Zinatniskie Raksti. 2023;27(1):1027–48.
Metwally RA, El-Sersy NA, Sikaily E, Sabry A, Ghozlan SA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep. 2022;12(1):18203.
Joshi C, Singhal RS. Modelling and optimization of Zeaxanthin production by paracoccus Zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatal Agric Biotechnol. 2016;8:228–35.
Korkerd S, Vatanyoopaisarn S, Visessanguan W, Thumthanarak B, Perez CL, Rungsardthong V, Mussatto SI. Saccharification of Carrot pomace and use as nutrient source for the production of ꞵ-cryptoxanthin by Pantoea anthophila FL1_IS5. Biomass Convers Biorefinery. 2024. p. 1–16.
Xiao R, Li X, Leonard E, Tharayil N, Zheng Y. Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn Stover on the Astaxanthin production by Thraustochytrium striatum. Algal Res. 2019;39:101475.
Reis-Mansur MCP, Cardoso-Rurr JS, Silva JVMA, de Souza GR, Cardoso VDS, Mansoldo FRP. Vermelho, A. B. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci Rep. 2019;9(1):9554.
Khodaiyan F, Razavi SH, Emam-Djomeh Z, Mousavi SMA, Hejazi MA. Effect of culture conditions on canthaxanthin production by Dietzia Natronolimnaea HS-1.pdf. J Microbiol Biotechnol. 2007;17:195201.
Silva TP, Paix SM. Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production. RSC Adv. 2016. p. 58055–63.
Mohanty SR, Mahawar H, Bajpai A, Dubey G, Parmar R, Atoliya N, Kollah B. Methylotroph bacteria and cellular metabolite carotenoid alleviate ultraviolet radiation-driven abiotic stress in plants. Front Microbiol. 2023;13:899268.
Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J. Torulene and torularhodin:new fungal carotenoids for industry? Microb Cell Fact. 2018;17(1):49.
Suwaleerat T, Thanapimmetha A, Srisaiyoot M, Chisti Y, Srinophakun P. Enhanced production of carotenoids and lipids by Rhodococcus opacus PD630. J Chem Technol Biotechnol. 2018;93(8):2160–9.
Mantzouridou F, Roukas T, Kotzekidou P. Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochem Eng J. 2002;10(2):123–35.
Rostami F, Razavi SH, Sepahi AA, Gharibzahedi SM. T. Canthaxanthin biosynthesis by Dietzia Natronolimnaea HS-1: effects of inoculation and aeration rate. Brazilian J Microbiol. 2014;45:447–56.
Sharma R, Ghoshal G. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnol Rep. 2020;25:e00407.
Vila E, Ferreira J, Lareo C, Saravia V. Zeaxanthin production by an Antarctic flavobacterium sp.: effect of dissolved oxygen concentration and modeling kinetics in batch and fed-batch fermentation. ACS Omega. 2024;9(51):50367–76.
Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol. 2008;99(8):3166–73.
Salehi Bakhtiyari A, Etemadifar Z, Borhani MS. Use of response surface methodology to enhance carotenoid pigment production from Cellulosimicrobium strain AZ. SN Appl Sci. 2020;2:1–9.
Nasrabadi MRN, Razavi SH. Enhancement of canthaxanthin production from Dietzia Natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. Braz J Chem Eng. 2010;27(4):517–29.
Saejung C, Apaiwong P. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol Bioprocess Eng. 2015;20:701–7.
Yu X, Jiang K, Zhang W, Dong S, Wu Y, Zhang G, Liu G. Purification, identification, and properties of a novel carotenoid produced by Arthrobacter sp. QL17 isolated from Mount Qomolangma. Antioxidants. 2022;11(8):1493.
Liu YS, Wu JY. Hydrogen peroxide-induced Astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol. 2006;73:663–8.
Zhang J, Li Q, Liu J, Lu Y, Wang Y, Wang Y. Astaxanthin overproduction and proteomic analysis of Phaffia rhodozyma under the oxidative stress induced by TiO2. Bioresour Technol. 2020;311:123525.
Kot AM, Błazejak S, Kieliszek M, Gientka I, Brys J, Reczek L, Pobiega K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World J Microbiol Biotechnol. 2019;35(10).
Marova I, Carnecka M, Halienova A, Breierova E, Koci R. Production of Carotenoid-/Ergosterol-Supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol Biotechnol. 2010;48:56–61.
Yang X, Yuan L, Zeeshan M, Yang C, Gao W, Zhang G, Wang C. Optimization of fermentation conditions to increase the production of antifungal metabolites from streptomyces sp. KN37. Microb Cell Fact. 2025;24(1):26.
Shahin YH, Elwakil BH, Ghareeb DA, Olama ZA. Micrococcus Lylae MW407006 pigment: production, optimization, nano-pigment synthesis, and biological activities. Biology. 2022;11(8):1171.
Hegazy AA, Abu-Hussien SH, Elsenosy NK, El-Sayed SM, El-Naga A. Optimization, characterization and biosafety of carotenoids produced from Whey using micrococcus luteus. BMC Biotechnol. 2024;24(1):74.
De Ridder E, Vandamme P, Willems A. Carotenoid biosynthesis in bacteria: the Crt gene products and their functional roles in the carotenogenic pathways. Crit Rev Microbiol. 2025. p.1–20.
Wang Y, Liu J, Yi Y, Zhu L, Liu M, Zhang Z, Jiang L. Insights into the synthesis, engineering, and functions of microbial pigments in deinococcus bacteria. Front Microbiol. 2024;15:1447785.
Kang CK, Jeong SW, Yang JE, Choi YJ. High-yield production of lycopene from corn steep liquor and glycerol using the metabolically engineered Deinococcus Radiodurans R1 strain. J Agric Food Chem. 2020;68:5147–53.
Xu N, Liu Y, Jiang H, Liu J, Ma Y. Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr Opin Biotechnol. 2020;66:27–35.
Su B, Deng MR, Zhu H. Advances in the discovery and engineering of gene targets for carotenoid biosynthesis in Recombinant strains. Biomolecules. 2023;13(12):1747.
Jeong SW, Kang CK, Choi YJ. Metabolic engineering of Deinococcus Radiodurans for the production of phytoene. J Microbiol Biotechnol. 2018;28:1691–9.
Jeong SW, Yang JE, Im S, Choi YJ. Development of Cre-lox based multiple knockout system in Deinococcus Radiodurans R1. Korean J Chem Eng. 2017;34:1728–33.
Adamczyk PA, Reed JL. Escherichia coli as a model organism for systems metabolic engineering. Curr Opin Syst Biol. 2017;6:80–8.
Xu X, Tian L, Xu J, Xie C, Jiang L, Huang H. Analysis and expression of the carotenoid biosynthesis genes from deinococcus wulumuqiensis R12 in engineered Escherichia coli. AMB Express. 2018;8(1):94.
Xinrui D, Bo L, Yihong B, Weifeng L, Yong T. Metabolic engineering of Escherichia coli for high-level production of Violaxanthin. Microb Cell Fact. 2023;22(1):115.
Kim MJ, Noh MH, Woo S, Lim HG, Jung GY. Enhanced lycopene production in Escherichia coli by expression of two MEP pathway enzymes from vibrio Sp. Dhg Catalysts. 2019;9:1003.
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: A state-of-the-art review. Bioresources Bioprocess. 2022;9(1):8.
Durán A, Venegas M, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Increasing carotenoid production in Xanthophyllomyces dendrorhous/Phaffia rhodozyma: SREBP pathway activation and promoter engineering. Biol Res. 2024;57(1):78.
Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L. Allevia Tion of metabolic bottleneck by combinatorial engineering enhanced Astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Tech. 2017;100:28–36.
Liu Y, Yan Z, Lu X, Xiao D, Jiang H. Improving the catalytic activity of isopentenyl phosphate kinase through protein Coevolution analysis. Sci Rep. (2016).
Zhao X, Shi F, Zhan W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in Recombinant Saccharomyces cerevisiae. Lett Appl Microbiol. 2015;61(4):354–60.
Ng CY, Farasat I, Maranas CD, Salis HM. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng. 2015;29:86–96.
Verwaal R, Jiang Y, Wang J, Daran J-M, Sandmann G, van den Berg JA, van Ooyen AJJ. Heterologous carotenoid production in Saccharomy Ces cerevisiae induces the pleiotropic drug resistance stress response. Yeast. 2010;27(12):983–98.
Lee JJL, Chen L, Cao B, Chen WN. Engineering Rhodosporidium Toru loides with a membrane transporter facilitates production and Separa Tion of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol. 2016;100(2):869–77.
Palladino F, Marcelino PRF, Schlogl AE, José ÁHM, Rodrigues RDCLB, Fabrino DL, Rosa CA. Bioreactors: applications and innovations for a sustainable and healthy future—a critical review. Appl Sci. 2024;14(20):9346.
Jonathan J, Tania V, Tanjaya JC, Katherine K. Recent advancements of fungal Xylanase upstream production and downstream processing. Indonesian J Life Sci. 2021. p. 37–58.
Jinendiran S, Kumar BSD, Dahms HU, Arulanandam CD. Sivakumar, N. Optimization of submerged fermentation process for improved production of beta carotene by Exiguobacterium acetylicum S01. Heliyon. 2021;2019:5e01730.
Venil CK, Dufossé L, Devi R. Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Front Sustainable Food Syst. 2020;4:100.
Hölker U, Lenz J. Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol. 2005;8(3):301–6.
Amorim-Carrilho KT, Cepeda A, Fente C, Regal P. Review of methods for analysis of carotenoids. TrAC – Trend Anal Chem. 2014;56:49–73.
Saini RK, Keum YS. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018;240:90–103.
Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol. 2019;103:1095–114.
Pereira AM, Durão J, Pereira JO, Ferreira C, Faustino M, Oliveira AS, Carvalho AP. An eco-friendly and up-scalable approach to extract canthaxanthin from yeast cells. Food Bioprod Process. 2024;146:170–6.
Mussagy CU, Paz AVC, Cornejo P, Santander C, González F, Voloua RG. Sangare, D. CFD insights into microwave-assisted deep eutectic solvent for the recovery of Astaxanthin from bacteria paracoccus carotinifaciens: from extraction to agricultural applications. Sep Purif Technol. 2025;360:131212.
Tufail T, Ul Ain B, Noreen H, Ikram S, Arshad A, Abdullahi MT. Nutritional benefits of lycopene and beta-carotene: A comprehensive overview. Food Sci Nutr. 2024;12(11):8715–41.
Aruldass CA, Dufossé L, Ahmad WA. Current perspective of yellowishorange pigments from microorganisms-a review. J Clean Prod. 2018;180:168–82.
Silva TP, Alves L, Salgado F, Roseiro JC, Łukasik RM, Paixão SM. Ionic liquids toward enhanced carotenoid extraction from bacterial biomass. Molecules. 2024;29(17):4132.
Sereti F, Alexandri M, Papapostolou H, Kachrimanidou V, Papadaki A, Kopsahelis N. Green extraction of carotenoids and oil produced by Rhodosporidium paludigenum using supercritical CO2 extraction: evaluation of cell disruption methods and extraction kinetics. Food Chem. 2025;483:144261.
Mussagy CU, Ramos NF, Caicedo-Paz AV, Farias FO, Gini ALR, Scarim CB. Dufossé, L. Techno-economic insights into one-pot bacterial Astaxanthin extraction and sustainable therapeutic product development using natural solvent mixtures. Sep Purif Technol. 2025;356:129926.
Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: chemistry, key applications and research perspectives. RSC Adv. 2024;14(35):25429–71.
Karpiński TM, Ożarowski M, Alam R, Łochyńska M, Stasiewicz M. What do we know about antimicrobial activity of Astaxanthin and fucoxanthin? Mar Drugs. 2021;20(1):36.
Mohana DC, Thippeswamy S, Abhishek RU. Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiation Prot Environ. 2013;36(4):168–74.
Boontosaeng T, Nimrat S, Vuthiphandchai V. Pigments production of bacteria isolated from dried seafood and capability to inhibit microbial pathogens. IOSR J Environ Sci Toxicol Food Technol. 2016;10:30–4.
Alshamaa DS, Issam MM. The role of extracted carotenoid from Staphylococci as antioxidant and antibacterial. Rafidain J Sci. 2017;26:17–24.
Barretto DA, Vootla SK. In vitro anticancer activity of Staphyloxanthin pigment extracted from Staphylococcus gallinarum KX912244, a gut microbe of Bombyx Mori. Indian J Microbiol. 2018;58(2):146–58.
Sidin RS, Retnaningrum E. Antibacterial activity of carotenoid pigments produced by heterotrophic bacteria from seawater in krakal coastal Area, Yogyakarta, Indonesia. Squalen Bull Mar Fisheries Postharvest Biotechnol. 2022;17(2):74–84.
Gurkok S. A novel carotenoid from Metabacillus idriensis LipT27: production, extraction, partial characterization, biological activities and use in textile dyeing. Arch Microbiol. 2022;204(6):296.
Kusmita L, Edi ANP, Franyoto YD, Haryanti S, Nurcahyanti AD. R. Sun protection and antibacterial activities of carotenoids from the soft coral Sinularia sp. symbiotic bacteria from Panjang Island, North Java sea. Saudi Pharm J. 2023;31(8):101680.
Majeed HZ. Antimicrobial activity of Micrococcus luteus cartenoid pigment. Al-Mustansiriyah J Sci. 2017;28(1):64.
Dawoud TM, Alharbi NS, Theruvinthalakal AM, Thekkangil A, Kadaikunnan S, Khaled JM, Rajaram SK. Characterization and antifungal activity of the yellow pigment produced by a Bacillus sp. DBS4 isolated from the lichen Dirinaria Agealita. Saudi J Biol Sci. 2020;27(5):1403–11.
Çobanoğlu Ş, Yazıcı A. Isolation, characterization, and antibiofilm activity of pigments synthesized by Rhodococcus sp. SC1. Curr Microbiol. 2022;79(1):15.
Nishino H, Murakoshi M, Li T, Takemura M, Kuchide M, Kanazawa M, Mou X, Wada S, Masuda M, Ohsaka Y, et al. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 2002;21:257–64.
Tapia C, López B, Astuya A, Becerra J, Gugliandolo C, Parra B, Martínez M. Antiproliferative activity of carotenoid pigments produced by extremophile bacteria. Nat Prod Res. 2021;35(22):4638–42.
Correa-Llantén DN, Amenábar MJ, Blamey JM. Antioxidant capacity of novel pigments from an Antarctic bacterium. J Microbiol. 2012;50(3):374–9.
Samanta AK, Chaudhuri S, Dutta D. Antioxidant efficacy of carotenoid extract from bacterial strain Kocuria Marina DAGII. Mater Today: Proc. 2016;3(10):3427–33.
Kim M, Seo DH, Park YS, Cha IT, Seo MJ. Isolation of Lactobacillus Plantarum subsp. Plantarum producing C30 carotenoid 4, 4’-diaponeurosporene and the assessment of its antioxidant activity. J Microbiol Biotechnol. 2019;29(12):1925–30.
Styczynski M, Rogowska A, Gieczewska K, Garstka M, Szakiel A, Dziewit L. Genome-based insights into the production of carotenoids by Antarctic bacteria, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. Molecules. 2020;25(19):4357.
Koshti R, Jagtap A, Noronha D, Patkar S, Nazareth J, Paulose R, Chakraborty P. Evaluation of antioxidant potential and UV protective properties of four bacterial pigments. Microbiol Biotechnol Lett. 2022;50(3):375–86.
Peerapornpisal Y, Amornlerdpison D, Jamjai U, Taesotikul T, Pongpaibul Y, Nualchareon M, Kanjanapothi D. Antioxidant and anti-inflammatory activities of brown marine alga, Padina minor Yamada. Chiang Mai J Sci. 2010;37:507–16.
Sluijs I, Cadier E, Beulens JW, Van Der AD, Spijkerman AM, van der Schouw YT. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis. 2015;25:376–81.
Bhatt T, Patel K. Carotenoids: potent to prevent diseases review. Nat Prod Bioprospecting. 2020;10:109–17.
Sayahi M, Shirali S. The antidiabetic and antioxidant effects of carotenoids: a review. Asian J Pharm Res Health Care. 2017. p. 186–91.
Nimbalkar V, Joshi U, Shinde S, Pawar G. In-vivo and in-vitro evaluation of therapeutic potential of β-Carotene in diabetes. J Diabetes Metabolic Disorders. 2021;20:1621–30.
Meléndez-Martínez AJ. An overview of Carotenoids, Apocarotenoids, and vitamin A in Agro-Food, Nutrition, Health, and disease. Mol Nutr Food Res. 2019;63:1801045.
Bories G, Brantom P, De JB, Chesson B, Sandro A, Debski P, Dierick B, Franklin N, Gropp A, Halle J. Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on safety and efficacy of Panaferd-AX (Red Carotenoid-Rich bacterium Paracoccus Carotinifaciens) as feed additive for salmon and trout. EFSA J. 2007;5:1–30.
Manikandan K, Felix N, Prabu EA. Review on the application and effect of carotenoids with respect to canthaxanthin in the culture of fishes and crustaceans. Int J Fish Aquat Stud. 2020;8:128–33.
Pasarin D, Rovinaru C. Sources of carotenoids and their uses as animal feed additives-a review. Sci Papers Ser D Anim Sci. 2018.
Akkapinyo C, Subannajui K, Poo-Arporn Y, Poo-Arporn RP. Disposable electrochemical sensor for food colorants detection by reduced graphene oxide and methionine film modified screen printed carbon electrode. Molecules. 2021;26(8):2312.
Jones JA, Wang X. Use of bacterial co-cultures for the efficient production of chemicals. Curr Opin Biotechnol. 2018;53:33–8.
Makaranga A, Jutur PP. Nutrient stress triggers sugar-mediated carotenoid production in algal-bacterial interactions. World J Microbiol Biotechnol. 2025;41(3):1–14.
Choi SS, Seo YB, Nam SW, Kim GD. Enhanced production of Astaxanthin by co-culture of paracoccus haeundaensis and lactic acid bacteria. Front Mar Sci. 2021;7:597553.
Korumilli T, Mishra S. Carotenoid production by Bacillus Clausii using rice powder as the sole substrate: pigment analyses and optimization of key production parameters. J Biochem Technol. 2014;5(4):788–94.
Jiang W, Sun J, Gao H, Tang Y, Wang C, Jiang Y, Jiang M. Carotenoids production and genome analysis of a novel carotenoid producing Rhodococcus aetherivorans N1. Enzym Microb Technol. 2023;164:110190.
Liu N, Cui T. Using omics techniques to analyze the effects of gene mutations and culture conditions on the synthesis of β-Carotene in Pantoea dispersa. Fermentation. 2024;10(2):83.
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–32.
Zhou Q, Huang D, Yang H, Hong Z, Wang C. Improvement of carotenoids’ production by increasing the activity of beta-carotene ketolase with different strategies. Microorganisms. 2024;12(2):377.
Cao J, Russo DA, Xie T, Groß GA, Zedler JA. Droplet-based microfluidics as a media optimization tool for cyanobacteria. bioRxiv. 2022; 2022-07.
Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry – challenges and the way forward. Front Nutr. 2019;6:7.
Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M. Zeaxanthin epoxidase 3 knockout mutants of the model diatom phaeodactylum tricornutum enable commercial production of the bioactive carotenoid Diatoxanthin. Mar Drugs. 2024;22(4):185.
Zhou Y, Yao Y, Zhang F, Yu N, Wang B, Tian B. Enhancement of lycopene biosynthesis using Self-Assembled Multi-Enzymic protein cages. Microorganisms. 2025;13(4):747.
Furubayashi M. Systematic Plasmid Engineering for Targeted Carotenoid Synthesis in Bacteria. bioRxiv, 2024; 2024-12.
Cui XC, Zheng Y, Liu Y, Yuchi Z, Yuan YJ. AI-driven de Novo enzyme design: strategies, applications, and future prospects. Biotechnol Adv. 2025. p. 108603.
Wen S, Zheng W, Bornscheuer UT, Wu S. Generative artificial intelligence for enzyme design: recent advances in models and applications. Curr Opin Green Sustainable Chem. 2025;52:101010.
Liu CZ, Zhang SZ, McClements DJ, Wang DF, Xu Y. Design of Astaxanthin-Loaded Core-Shell nanoparticles consisting of Chitosan oligosaccharides and Poly(lactic-co-glycolic acid): enhancement of water Solubility, Stability, and Bioavailability.J. Agric. Food Chem. 2019;67:5113–21.
Peng L, Zhang Z, Li Q, Yang H. Current challenges and issues in the application of Astaxanthin. Fishes. 2025;10(4):159.
Lara-Abia S, Lobo G, Pérez-Pascual N, Welti-Chanes J, Cano MP. Improvement in the stability and bioaccessibility of carotenoid and carotenoid esters from a Papaya by-product using O/W emulsions. Foods. 2023;12(14):2654.
Geng Q, Zhao YM, Wang L, Xu LL, Chen X, Han J. Development and evaluation of Astaxanthin as nanostructure lipid carriers in topical delivery. AAPS PharmSciTech. 2020;21:1–12.
de Lima FF, Mendonca TC, Pinilla CMB, Alvim ID, Vido MAG, de Paula E, e, Alves AT. S. Co-encapsulation of probiotic bacteria L. rhamnosus GG and β-carotene by a novel biphasic encapsulation technique: Stability and in vivo anti-inflammatory properties. Food Bioscience. 2024;62:105061.
Dutta D, Sheet N, Dutta D. Elucidating enhanced β-Cryptoxanthin delivery via chitosomes: insights into release Kinetics, stability Profiles, and intestinal oxidative stress Inhibition. J Food Process Eng. 2025;48(5):e70115.
Hwang EJ, Jeong YI, Lee KJ, Yu YB, Ohk SH, Lee SY. Anticancer activity of Astaxanthin-Incorporated Chitosan nanoparticles. Molecules. 2024;29:529.
Lee N, Narasimhan AL, Moon G, Kim YE, Park M, Kim B, Mahadi R, Chung S, Oh YK. Room-Temperature cell disruption and Astaxanthin recovery from haematococcus lacustris cysts using ultrathin α-Quartz nanoplates and ionic liquids. Appl Sci. 2022;12:2210.
Zhang CX, Xu YX, Wu S, Zheng WY, Song S, Ai CQ. Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol. 2022;205:396–409.
Focsan AL, Polyakov NE, Kispert LD. Supramolecular carotenoid complexes of enhanced solubility and stability—The way of bioavailability improvement. Molecules. 2019;24(21):3947.
Puniredd SR, Lim X, Weingarten M, Chen X. Supercritical carbon Dioxide-Assisted recovery of Endotoxin-Free lycopene from Escherichia coli. ACS Sustain Chem Eng. 2025;13(14):5168–77.
Seyf JY, Flasafi SM, Babaei AH. Development of the NRTL functional activity coefficient (NRTL-FAC) model using high quality and critically evaluated phase equilibria data. 1. Fluid Phase Equilibria. 2021;541:113088.