Basu, S. & Mackey, K. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10, 869 (2018).


Google Scholar
 

Smith, W. O., Ainley, D. G., Arrigo, K. R. & Dinniman, M. S. The oceanography and ecology of the Ross Sea. Annu. Rev. Mar. Sci. 6, 469–487 (2014).


Google Scholar
 

Haberman, K. L., Ross, R. M. & Quetin, L. B. Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J. Exp. Mar. Biol. Ecol. 283, 97–113 (2003).


Google Scholar
 

Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).


Google Scholar
 

Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

CAS 

Google Scholar
 

Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).


Google Scholar
 

Raphael, M. N. & Handcock, M. S. A new record minimum for Antarctic sea ice. Nat. Rev. Earth Environ. 3, 215–216 (2022).


Google Scholar
 

Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).


Google Scholar
 

Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).


Google Scholar
 

Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).


Google Scholar
 

Flexas, M. M., Thompson, A. F., Schodlok, M. P., Zhang, H. & Speer, K. Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica. Sci. Adv. 8, eabj9134 (2022).


Google Scholar
 

Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4, 40 (2017).

Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).


Google Scholar
 

Henley, S. F. et al. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7, 581 (2020).


Google Scholar
 

Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).


Google Scholar
 

Boyd, P. W., Strzepek, R., Fu, F. & Hutchins, D. A. Environmental control of open‐ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55, 1353–1376 (2010).

CAS 

Google Scholar
 

Tagliabue, A. ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature 623, 250–252 (2023).

CAS 

Google Scholar
 

Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B 362, 67–94 (2007).


Google Scholar
 

Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).


Google Scholar
 

Schofield, O. et al. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 20170173 (2018).


Google Scholar
 

Thomalla, S. J., Nicholson, S.-A., Ryan-Keogh, T. J. & Smith, M. E. Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers. Nat. Clim. Change 13, 975–984 (2023).


Google Scholar
 

Del Castillo, C. E., Signorini, S. R., Karaköylü, E. M. & Rivero‐Calle, S. Is the Southern Ocean getting greener? Geophys. Res. Lett. 46, 6034–6040 (2019).


Google Scholar
 

Pinkerton, M. H. et al. Evidence for the impact of climate change on primary producers in the Southern Ocean. Front. Ecol. Evol. 9, 592027 (2021).


Google Scholar
 

Cael, B. B., Bisson, K., Boss, E., Dutkiewicz, S. & Henson, S. Global climate-change trends detected in indicators of ocean ecology. Nature 619, 551–554 (2023).

CAS 

Google Scholar
 

Hayward, A., Pinkerton, M. H., Wright, S. W., Gutiérrez-Rodriguez, A. & Law, C. S. Twenty-six years of phytoplankton pigments reveal a circumpolar class divide around the Southern Ocean. Commun. Earth Environ. 5, 92 (2024).


Google Scholar
 

Carroll, D. et al. The ECCO‐Darwin data‐assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air–sea CO2 flux. J. Adv. Model. Earth Syst. 12, e2019MS001888 (2020).


Google Scholar
 

Wright, S. W. et al. Phytoplankton community structure and stocks in the Southern Ocean (30–80° E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res. II 57, 758–778 (2010).

CAS 

Google Scholar
 

Laws, E. A. & Bannister, T. T. Nutrient‐ and light‐limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25, 457–473 (1980).

CAS 

Google Scholar
 

Geider, R. J., Maclntyre, H. L. & Kana, T. M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43, 679–694 (1998).

CAS 

Google Scholar
 

Sosik, H. M. & Olson, R. J. Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Res. I 49, 1195–1216 (2002).

CAS 

Google Scholar
 

Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D. & Boyd, P. W. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol. Oceanogr. 56, 1983–2002 (2011).

CAS 

Google Scholar
 

Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).

CAS 

Google Scholar
 

Sathyendranath, S. et al. Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar. Ecol. Prog. Ser. 383, 73–84 (2009).

CAS 

Google Scholar
 

Kropuenske, L. R. et al. Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol. Oceanogr. 54, 1176–1196 (2009).

CAS 

Google Scholar
 

Hayward, A., Pinkerton, M. H. & Gutierrez‐Rodriguez, A. phytoclass: a pigment‐based chemotaxonomic method to determine the biomass of phytoplankton classes. Limnol. Oceanogr. Methods 21, 220–241 (2023).


Google Scholar
 

Mangoni, O. et al. Phaeocystis antarctica unusual summer bloom in stratified Antarctic coastal waters (Terra Nova Bay, Ross Sea). Mar. Environ. Res. 151, 104733 (2019).

CAS 

Google Scholar
 

Arrigo, K. R., Weiss, A. M. & Smith, W. O. Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. J. Geophys. Res. Oceans 103, 1007–1021 (1998).

CAS 

Google Scholar
 

Fisher, B. J. et al. Climate-driven shifts in Southern Ocean primary producers and biogeochemistry in CMIP6 models. Biogeosciences 22, 975–994 (2025).


Google Scholar
 

Mendes, C. R. B. et al. Cryptophytes: an emerging algal group in the rapidly changing Antarctic Peninsula marine environments. Glob. Change Biol. 29, 1791–1808 (2023).

CAS 

Google Scholar
 

Ryan-Keogh, T. J., Thomalla, S. J., Monteiro, P. M. S. & Tagliabue, A. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton. Science 379, 834–840 (2023).

CAS 

Google Scholar
 

Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Change 9, 148–152 (2019).

CAS 

Google Scholar
 

Lizotte, M. P. The contributions of sea ice algae to Antarctic marine primary production. Am. Zool. 41, 57–73 (2001).


Google Scholar
 

Yan, D. et al. Response to sea ice melt indicates high seeding potential of the ice diatom Thalassiosira to spring phytoplankton blooms: a laboratory study on an ice algal community from the Sea of Okhotsk. Front. Mar. Sci. 7, 613 (2020).


Google Scholar
 

Höfer, J. et al. The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Prog. Oceanogr. 174, 105–116 (2019).


Google Scholar
 

Pinkerton, M. H. & Hayward, A. Estimating variability and long-term change in sea ice primary productivity using a satellite-based light penetration index. J. Mar. Syst. 221, 103576 (2021).


Google Scholar
 

Bennetts, L. G. et al. Closing the loops on Southern Ocean dynamics: from the circumpolar current to ice shelves and from bottom mixing to surface waves. Rev. Geophys. 62, e2022RG000781 (2024).


Google Scholar
 

Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change 11, e652 (2020).


Google Scholar
 

Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).


Google Scholar
 

Moisan, T. A. & Mitchell, B. G. Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol. Oceanogr. 44, 247–258 (1999).


Google Scholar
 

Arrigo, K. R. et al. Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Integr. Comp. Biol. 50, 950–966 (2010).


Google Scholar
 

Mendes, C. R. B. et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res. II 149, 161–170 (2018).

CAS 

Google Scholar
 

Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

CAS 

Google Scholar
 

Johnston, N. M. et al. Status, change, and futures of zooplankton in the Southern Ocean. Front. Ecol. Evol. 9, 624692 (2022).


Google Scholar
 

Von Harbou, L. et al. Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics. Mar. Biol. 158, 2009–2026 (2011).


Google Scholar
 

Alcaraz, M. et al. Changes in the C, N, and P cycles by the predicted salps–krill shift in the southern ocean. Front. Mar. Sci. 1, 45 (2014).

Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep Sea Res. II 49, 1881–1907 (2002).

CAS 

Google Scholar
 

Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).

CAS 

Google Scholar
 

Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T. & Watters, G. M. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS ONE 13, e0191011 (2018).


Google Scholar
 

Dong, Y. et al. Direct observational evidence of strong CO2 uptake in the Southern Ocean. Sci. Adv. 10, eadn5781 (2024).

CAS 

Google Scholar
 

Trinh, R., Ducklow, H. W., Steinberg, D. K. & Fraser, W. R. Krill body size drives particulate organic carbon export in West Antarctica. Nature 618, 526–530 (2023).

CAS 

Google Scholar
 

Décima, M. et al. Salp blooms drive strong increases in passive carbon export in the Southern Ocean. Nat. Commun. 14, 425 (2023).


Google Scholar
 

Iversen, M. H. et al. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res. II 138, 116–125 (2017).

CAS 

Google Scholar
 

Amblas, D. Antarctic continental shelf break (shapefile) [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.890863 (2018).

Merchant, C. J. et al. Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 1, 179–191 (2014).


Google Scholar
 

Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13, 49–78 (2019).


Google Scholar
 

Orsi, A. H. & Harris, U. Fronts of the Antarctic Circumpolar Current—GIS data, version 1. Australian Antarctic Data Centre https://data.aad.gov.au/metadata/antarctic_circumpolar_current_fronts (2019).

Belgiu, M. & Drăguţ, L. Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogram. Remote Sens. 114, 24–31 (2016).


Google Scholar
 

Frouin, R., McPherson, J., Ueyoshi, K. & Franz, B. A. A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data. In Proc. Volume 8525, Remote Sensing of the Marine Environment II (eds Frouin, R. J. et al.) 852519 (SPIE, 2012); https://doi.org/10.1117/12.981264

Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI). Sensors 19, 4285 (2019).

CAS 

Google Scholar
 

Carroll, D. et al. Attribution of space–time variability in global‐ocean dissolved inorganic carbon. Glob. Biogeochem. Cycles 36, e2021GB007162 (2022).

CAS 

Google Scholar
 

Wunsch, C. & Heimbach, P. Dynamically and kinematically consistent global ocean circulation and ice state estimates. Int. Geophys. 103, 553–579 (2013).

Wunsch, C., Heimbach, P., Ponte, R. & Fukumori, I. The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography 22, 88–103 (2009).


Google Scholar
 

Menemenlis, D., Fukumori, I. & Lee, T. Using Green’s functions to calibrate an ocean general circulation model. Mon. Weather Rev. 133, 1224–1240 (2005).


Google Scholar
 

Bakker, D. C. E. et al. An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth Syst. Sci. Data 6, 69–90 (2014).


Google Scholar
 

Lauvset, S. K. et al. The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 16, 2047–2072 (2024).


Google Scholar
 

Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6, 145–153 (2016).


Google Scholar
 

Hijmans, R. J. et al. terra. R package version 1.6-22 https://cran.r-project.org/web/packages/terra/index.html (2022).

Pinkerton, M. H. et al. Zooplankton in the Southern Ocean from the continuous plankton recorder: distributions and long-term change. Deep Sea Res. I 162, 103303 (2020).

CAS 

Google Scholar
 

Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).


Google Scholar
 

Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition. J. Stat. 6, 3–73 (1990).


Google Scholar
 

Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).


Google Scholar
 

Yue, S. & Wang, C. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 18, 201–218 (2004).


Google Scholar
 

Hayward, A. & Pinkerton, M. Monthly ensemble mean chlorophyll-a concentration for Antarctic phytoplankton groups (1997–2023) [Data set]. Zenodo https://doi.org/10.5281/zenodo.15593919 (2025).

Hayward, A. NClim_code. GitHub https://github.com/alexanderhayward1995/NClim_code (2025).