Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

Article 
ADS 

Google Scholar
 

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

Article 

Google Scholar
 

Castellanos-Gomez, A. et al. Van der waals heterostructures. Nat. Rev. Methods Prim. 2, 58 (2022).

Article 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. 108, 12233–12237 (2011).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

Article 
ADS 

Google Scholar
 

Shavit, G., Berg, E., Stern, A. & Oreg, Y. Theory of correlated insulators and superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 127, 247703 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Liu, C.-X., Chen, Y., Yazdani, A. & Bernevig, B. A. Electron–K-phonon interaction in twisted bilayer graphene. Phys. Rev. B 110, 045133 (2024).

Article 
ADS 

Google Scholar
 

Wang, Y.-J., Zhou, G.-D., Peng, S.-Y., Lian, B. & Song, Z.-D. Molecular pairing in twisted bilayer graphene superconductivity. Phys. Rev. Lett. 133, 146001 (2024).

Wang, Y.-J., Zhou, G.-D., Lian, B. & Song, Z.-D. Electron-phonon coupling in the topological heavy fermion model of twisted bilayer graphene. Phys. Rev. B 111, 035110 (2025).

Ochi, M., Koshino, M. & Kuroki, K. Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions. Phys. Rev. B 98, 081102 (2018).

Article 
ADS 

Google Scholar
 

Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Acoustic-phonon-mediated superconductivity in bernal bilayer graphene. Phys. Rev. B 105, L100503 (2022).

Article 
ADS 

Google Scholar
 

Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).


Google Scholar
 

Angeli, M., Tosatti, E. & Fabrizio, M. Valley jahn-teller effect in twisted bilayer graphene. Phys. Rev. X 9, 041010 (2019).


Google Scholar
 

Blason, A. & Fabrizio, M. Local kekulé distortion turns twisted bilayer graphene into topological mott insulators and superconductors. Phys. Rev. B 106, 235112 (2022).

Article 
ADS 

Google Scholar
 

Christos, M., Sachdev, S. & Scheurer, M. S. Nodal band-off-diagonal superconductivity in twisted graphene superlattices. Nat. Commun. 14, 7134 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Islam, S. F., Zyuzin, A. Y. & Zyuzin, A. A. Unconventional superconductivity with preformed pairs in twisted bilayer graphene. Phys. Rev. B 107, L060503 (2023).

Article 
ADS 

Google Scholar
 

Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X.-Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018).

Article 
ADS 

Google Scholar
 

You, Y.-Z. & Vishwanath, A. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater. 4, 16 (2019).

Article 
ADS 

Google Scholar
 

Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Löthman, T., Schmidt, J., Parhizgar, F. & Black-Schaffer, A. M. Nematic superconductivity in magic-angle twisted bilayer graphene from atomistic modeling. Commun. Phys. 5, 92 (2022).

Article 

Google Scholar
 

Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 375, 774–778 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Holleis, L. et al. Nematicity and orbital depairing in superconducting bernal bilayer graphene. Nature Physics 21, 444–450 (2025).

Li, C. et al. Tunable superconductivity in electron-and hole-doped bernal bilayer graphene. Nature 631, 300–306 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Su, R., Kuiri, M., Watanabe, K., Taniguchi, T. & Folk, J. Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater. 22, 1332–1337 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Han, T. et al. Signatures of chiral superconductivity in rhombohedral graphene. Nature 643, 654–661 (2025).

Choi, Y. et al. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 639, 342–347 (2025).

Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Tang, Y. et al. Simulation of hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Regan, E. C. et al. Mott and generalized wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Li, T. et al. Continuous mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Li, T. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Cai, J. et al. Signatures of fractional quantum anomalous hall states in twisted MoTe2. Nature 622, 63–68 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Zeng, Y. et al. Thermodynamic evidence of fractional chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Park, H. et al. Observation of fractionally quantized anomalous hall effect. Nature 622, 74–79 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Xu, F. et al. Observation of integer and fractional quantum anomalous hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).


Google Scholar
 

Kang, K. et al. Evidence of the fractional quantum spin hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Wietek, A. et al. Tunable stripe order and weak superconductivity in the moiré hubbard model. Phys. Rev. Res. 4, 043048 (2022).

Article 

Google Scholar
 

Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

Article 

Google Scholar
 

Zhou, B. & Zhang, Y.-H. Chiral and nodal superconductors in the t−J model with valley contrasting flux on a triangular moiré lattice. Phys. Rev. B 108, 155111 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bélanger, M., Fournier, J. & Sénéchal, D. Superconductivity in the twisted bilayer transition metal dichalcogenide WSe2: a quantum cluster study. Phys. Rev. B 106, 235135 (2022).

Article 
ADS 

Google Scholar
 

Chen, F. & Sheng, D. N. Singlet, triplet, and pair density wave superconductivity in the doped triangular-lattice moiré system. Phys. Rev. B 108, L201110 (2023).

Article 
ADS 

Google Scholar
 

Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré t − J − U model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

Article 
ADS 

Google Scholar
 

Akbar, W., Biborski, A., Rademaker, L. & Zegrodnik, M. Topological superconductivity with mixed singlet-triplet pairing in moiré transition-metal-dichalcogenide bilayers. Phys. Rev. B 110, 064516 (2024).

Wu, Y.-M., Wu, Z. & Yao, H. Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Xie, Y.-M. & Law, K. T. Orbital fulde-ferrell pairing state in moiré ising superconductors. Phys. Rev. Lett. 131, 016001 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Schrade, C. & Fu, L. Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

Article 
ADS 

Google Scholar
 

Crépel, V., Guerci, D., Cano, J., Pixley, J. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

Pan, H., Wu, F. & Das Sarma, S. Band topology, hubbard model, heisenberg model, and dzyaloshinskii-moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

Article 

Google Scholar
 

Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-fock study of the moiré hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

Article 
ADS 

Google Scholar
 

Kiese, D., He, Y., Hickey, C., Rubio, A. & Kennes, D. M. TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2. APL Mater. 10, 031113 (2022).

Article 
ADS 

Google Scholar
 

Pan, H., Wu, F. & Das Sarma, S. Quantum phase diagram of a moiré-hubbard model. Phys. Rev. B 102, 201104 (2020).

Article 
ADS 

Google Scholar
 

Kundu, S., Naik, M. H., Krishnamurthy, H. R. & Jain, M. Moiré induced topology and flat bands in twisted bilayer WSe2: a first-principles study. Phys. Rev. B 105, L081108 (2022).

Article 
ADS 

Google Scholar
 

Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Qiu, W.-X., Li, B., Luo, X.-J. & Wu, F. Interaction-driven topological phase diagram of twisted bilayer MoTe2. Phys. Rev. X 13, 041026 (2023).


Google Scholar
 

Xu, C., Li, J., Xu, Y., Bi, Z. & Zhang, Y. Maximally localized wannier functions, interaction models, and fractional quantum anomalous hall effect in twisted bilayer MoTe2. Proc. Natl Acad. Sci. 121, e2316749121 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Crépel, V. & Millis, A. Bridging the small and large in twisted transition metal dichalcogenide homobilayers: a tight binding model capturing orbital interference and topology across a wide range of twist angles. Phys. Rev. Res. 6, 033127 (2024).

Article 

Google Scholar
 

Koshino, M. et al. Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).


Google Scholar
 

Kang, J. & Vafek, O. Symmetry, maximally localized wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).


Google Scholar
 

Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

Article 
ADS 

Google Scholar
 

Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

Article 
ADS 
MathSciNet 

Google Scholar
 

McMillan, W. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).

Article 
ADS 

Google Scholar
 

Cea, T. & Guinea, F. Coulomb interaction, phonons, and superconductivity in twisted bilayer graphene. Proc. Natl Acad. Sci. 118, e2107874118 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ghazaryan, A., Holder, T., Serbyn, M. & Berg, E. Unconventional superconductivity in systems with annular fermi surfaces: Application to rhombohedral trilayer graphene. Phys. Rev. Lett. 127, 247001 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453 (2018).

Article 
ADS 

Google Scholar
 

Ray, S., Jung, J. & Das, T. Wannier pairs in superconducting twisted bilayer graphene and related systems. Phys. Rev. B 99, 134515 (2019).

Article 
ADS 

Google Scholar
 

Chatterjee, S., Wang, T., Berg, E. & Zaletel, M. P. Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene. Nat. Commun. 13, 6013 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kohn, W. & Luttinger, J. New mechanism for superconductivity. Phys. Rev. Lett. 15, 524 (1965).

Article 
ADS 
MathSciNet 

Google Scholar
 

Monthoux, P., Balatsky, A. & Pines, D. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448 (1991).

Article 
ADS 
PubMed 

Google Scholar
 

Scalapino, D. J. The case for dx2- y2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

Article 
ADS 

Google Scholar
 

Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

Article 
ADS 

Google Scholar
 

Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

Article 
ADS 

Google Scholar
 

Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

Article 
ADS 

Google Scholar
 

Chen, K. S. et al. Unconventional superconductivity on the triangular lattice hubbard model. Phys. Rev. B 88, 041103 (2013).

Article 
ADS 

Google Scholar
 

Venderley, J. & Kim, E.-A. Density matrix renormalization group study of superconductivity in the triangular lattice hubbard model. Phys. Rev. B 100, 060506 (2019).

Article 
ADS 

Google Scholar
 

Fallahazad, B. et al. Shubnikov–de haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Cheng, M., Sun, K., Galitski, V. & Das Sarma, S. Stable topological superconductivity in a family of two-dimensional fermion models. Phys. Rev. B 81, 024504 (2010).

Article 
ADS 

Google Scholar
 

Deutscher, G. Percolation and Superconductivity, 95–113 (Springer, 1984).

Alexander, S. Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27, 1541–1557 (1983).

Article 
ADS 
MathSciNet 

Google Scholar
 

Fischer, A. et al. Theory of intervalley-coherent afm order and topological superconductivity in tWSe2. Preprint at https://arxiv.org/abs/2412.14296 (2024).

Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Julku, A., Peotta, S., Vanhala, T. I., Kim, D.-H. & Törmä, P. Geometric origin of superfluidity in the Lieb-lattice flat band. Phys. Rev. Lett. 117, 045303 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Liang, L. et al. Band geometry, berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).

Article 
ADS 

Google Scholar
 

Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid weight bounds from symmetry and quantum geometry in flat bands. Phys. Rev. Lett. 128, 087002 (2022).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Huhtinen, K.-E., Herzog-Arbeitman, J., Chew, A., Bernevig, B. A. & Törmä, P. Revisiting flat band superconductivity: dependence on minimal quantum metric and band touchings. Phys. Rev. B 106, 014518 (2022).

Article 
ADS 

Google Scholar
 

Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

Article 

Google Scholar
 

Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Banerjee, M. et al. Observation of half-integer thermal hall conductance. Nature 559, 205–210 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

Article 
ADS 
PubMed 

Google Scholar
 

Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors-evidence for \({{{{\rm{d}}}}}_{{x}^{2}-{y}^{2}}\) symmetry. Rev. Mod. Phys. 67, 515 (1995).

Article 
ADS 

Google Scholar
 

Tsuei, C. & Kirtley, J. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000).

Article 
ADS 

Google Scholar
 

Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025)

Myerson-Jain, N. & Xu, C. Superconductor-insulator transition in the TMD moiré systems and the deconfined quantum critical point. Preprint at https://arxiv.org/abs/2406.12971 (2024).

Zhu, J., Chou, Y.-Z., Xie, M. & Sarma, S. D. Superconductivity in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 111, L060501 (2025).

Christos, M., Bonetti, P. M. & Scheurer, M. S. Approximate symmetries, insulators, and superconductivity in the continuum-model description of twisted WSe2. Phys. Rev. Lett. 135, 046503 (2025).

Xie, F. et al. Superconductivity in twisted WSe2 from topology-induced quantum fluctuations. Phys. Rev. Lett. 134, 136503 (2025).

Guerci, D., Kaplan, D., Ingham, J., Pixley, J. & Millis, A. J. Topological superconductivity from repulsive interactions in twisted WSe2. Preprint at https://arxiv.org/abs/2408.16075 (2024).