Leewenhoeck, A. An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call’d worms in the nose, the cuticula consisting of scales. Philos. Trans. R. Soc. Lond. 14, 568–574 (1997).


Google Scholar
 

Ursell, L. K. et al. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129, 1204–1208 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Derovs, A., Laivacuma, S. & Krumina, A. Targeting microbiota: what do we know about it at present? Medicina 55, 459 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lederberg, J. & Mccray, A. T. ‘Ome Sweet ‘Omics—a genealogical treasury of words. Scientist 15, 8–8 (2001).


Google Scholar
 

Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, M. & Kim, C. H. Regulation of humoral immunity by gut microbial products. Gut Microbes 8, 392–399 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Jeong, S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin. Exp. Pediatr. 65, 438 (2021).

Article 
PubMed Central 

Google Scholar
 

Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kers, J. G. & Saccenti, E. The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Front. Microbiol. 12, 796025 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 189 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wilson, D. R., Binford, L. & Hickson, S. The gut microbiome and mental health. J. Holist. Nurs. 42, 79–87 (2024).

Article 
PubMed 

Google Scholar
 

Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Kumar, A. et al. Gut microbiota in anxiety and depression: unveiling the relationships and management options. Pharmaceuticals 16, 565 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Madhogaria, B., Bhowmik, P. & Kundu, A. Correlation between human gut microbiome and diseases. Infect. Med. 1, 180–191 (2022).

Article 

Google Scholar
 

Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front. Neuroendocrinol. 51, 80–101 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Malan-Muller, S. et al. The gut microbiome and mental health: implications for anxiety- and trauma-related disorders. Omics 22, 90–107 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).

Article 
PubMed 

Google Scholar
 

Erdman, S. E. & Poutahidis, T. In International Review of Neurobiology (eds Cryan, J. F. & Clarke, G.) Vol. 131, 91–126 (Academic Press, 2016).

Varian, B. J. et al. Microbial lysate upregulates host oxytocin. Brain, Behav., Immun. 61, 36–49 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Williams, B. L., Hornig, M., Parekh, T. & Lipkin, W. I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio, https://doi.org/10.1128/mbio.00261-11 (2012).

Borkent, J., Ioannou, M., Laman, J. D., Haarman, B. C. M. & Sommer, I. E. C. Role of the gut microbiome in three major psychiatric disorders. Psychol. Med. 52, 1222–1242 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Knudsen, J. K. et al. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci. Rep. 11, 21869 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Pan, B. et al. Efficacy and safety of gut microbiome-targeted treatment in patients with depression: a systematic review and meta-analysis. BMC Psychiatry 25, 64 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Reid, G. Disentangling what we know about microbes and mental health. Front. Endocrinol. 10, 81 (2019).

Article 

Google Scholar
 

Robinson, J. M. et al. Twenty important research questions in microbial exposure and social equity. MSystems 7, e0124021 (2022).

Article 
PubMed 

Google Scholar
 

Alexandrova, A. Well-being as an object of science. Philos. Sci. 79, 678–689 (2012).

Article 

Google Scholar
 

World Health Organization. Strengthening Mental Health Promotion (Fact Sheet No. 220) (2001).

Huppert, F. A Positive mental health in individuals and populations. In The Science of Well-being (eds Huppert, F.A., Baylis, N. & Keverne, B.) 307–340 (Oxford University Press, 2005).

Diener, E. & Chan, M. Y. Happy people live longer: subjective well-being contributes to health and longevity. Appl. Psychol.: Health Well-Being 3, 1–43 (2011).


Google Scholar
 

Steptoe, A., Deaton, A. & Stone, A. A. Subjective wellbeing, health, and ageing. Lancet 385, 640–648 (2015).

Article 
PubMed 

Google Scholar
 

Gere, J. & Schimmack, U. When romantic partners’ goals conflict: effects on relationship quality and subjective well-being. J. Happiness Stud. 14, 37–49 (2013).

Article 

Google Scholar
 

Busseri, M. A. & Quoidbach, J. The structure of everyday happiness is best captured by a latent subjective well-being factor. J. Res. Personal. 96, 104177 (2022).

Article 

Google Scholar
 

Blum, H. E. The human microbiome. Adv. Med. Sci. 62, 414–420 (2017).

Article 
PubMed 

Google Scholar
 

Iasiello, M. et al. What’s the difference between measures of wellbeing, quality of life, resilience, and coping? An umbrella review and concept map of 155 measures of positive mental health. Int. J. Wellbeing 14, 1–25 (2024).

Article 

Google Scholar
 

Diener, E., Oishi, S. & Tay, L. Advances in subjective well-being research. Nat. Hum. Behav. 2, 253–260 (2018).

Article 
PubMed 

Google Scholar
 

Dominianni, C. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10, e0124599 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hu, X. et al. Changes in the skin microbiome during male maturation from 0 to 25 years of age. Ski. Res. Technol. 29, e13432 (2023).

Article 

Google Scholar
 

Mueller, S. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72, 1027–1033 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shin, J.-H. et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 170, 192–201 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Valeri, F. & Endres, K. How biological sex of the host shapes its gut microbiota. Front. Neuroendocrinol. 61, N.PAG–N.PAG (2021).

Article 

Google Scholar
 

Aleman, F. D. D. & Valenzano, D. R. Microbiome evolution during host aging. PLoS Pathog. 15, e1007727 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morar, N. & Bohannan, B. J. M. The conceptual ecology of the human microbiome. Q. Rev. Biol. 94, 149–175 (2019).

Article 

Google Scholar
 

Goh, B. Y.-L., Yeo, J. Y. & Gan, S. K.-E. Psycho-otorhinomicrobiology: the link between the aerotolerant flora of the nose and ears, and that of the psyche. APDTrove. https://doi.org/10.30943/2019/25032019 (2019).

Cheng, Q. et al. Relationship functioning and gut microbiota composition among older adult couples. Int. J. Environ. Res. Public Health 20, 5435 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Henning, S. M. et al. Health benefit of vegetable/fruit juice-based diet: role of microbiome. Sci. Rep. 7, 2167 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, S.-H. et al. Emotional well-being and gut microbiome profiles by enterotype. Sci. Rep. 10, 20736 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Magzal, F. et al. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Front. Nutr. 10, 1234549 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, L. et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system. Neurogastroenterol. Motil. 28, 1233–1240 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Michels, N. et al. Gut microbiome patterns depending on children’s psychosocial stress: reports versus biomarkers. Brain, Behav., Immun. 80, 751–762 (2019).

Article 
PubMed 

Google Scholar
 

Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Adak, A. & Khan, M. R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 76, 473–493 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heidary, M. et al. Effect of Helicobacter pylori–induced gastric cancer on gastrointestinal microbiota: a narrative review. Front. Oncol. 14 (2025).

Blackmer-Raynolds, L. & Sampson, T. R. Overview of the gut microbiome. Semin. Neurol. 43, 518–529 (2023).

Article 
PubMed 

Google Scholar
 

Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Sarkar, A. et al. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci. 39, 763–781 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kosyra, K., Drabczyk, M., Marczyńska, Z., Zyśk, A. & Magda, I. Microbiota and depressive disorders—a review. J. Educ., Health Sport 60, 188–203 (2024).

Article 

Google Scholar
 

Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fakhoury, M. Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol. Neurobiol. 53, 2778–2786 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baechle, J. J. et al. Chronic inflammation and the hallmarks of aging. Mol. Metab. 74, 101755 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shamriz, O. et al. Microbiota at the crossroads of autoimmunity. Autoimmun. Rev. 15, 859–869 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, X. et al. Investigation of Clostridium Butyricum on atopic dermatitis based on gut microbiota and TLR4/MyD88/NF-κB signaling pathway. Technol. Health Care. https://doi.org/10.1177/09287329241301680 (2025).

Barak, Y. The immune system and happiness. Autoimmun. Rev. 5, 523–527 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Beane, K. E. et al. Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Appl. Biol. Chem. 64, 36 (2021).

Article 
CAS 

Google Scholar
 

Gupta, A., Singh, V. & Mani, I. Dysbiosis of human microbiome and infectious diseases. Prog. Mol. Biol. Transl. Sci. 192, 33–51 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Christian, L. M. et al. Gut microbiome composition is associated with temperament during early childhood. Brain, Behav., Immun. 45, 118–127 (2015).

Article 
PubMed 

Google Scholar
 

Johnson, K. V.-A. Gut microbiome composition and diversity are related to human personality traits. Hum. Microbiome J. 15, 100069 (2020).

Article 

Google Scholar
 

Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Falony, G., Vieira-Silva, S. & Raes, J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat. Microbiol. 3, 526–528 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Boehm, J. K. & Kubzansky, L. D. The heart’s content: The association between positive psychological well-being and cardiovascular health. Psychol. Bull. 138, 655–691 (2012).

Article 
PubMed 

Google Scholar
 

Lay, C. et al. Colonic microbiota signatures across five Northern European countries. Appl. Environ. Microbiol. 71, 4153–4155 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baquero, F. & Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 18, 2–4 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Joos, R. et al. Examining the healthy human microbiome concept. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01107-0 (2024).

Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Kumpitsch, C. et al. Reduced olfactory performance is associated with changed microbial diversity, oralization, and accumulation of dead biomaterial in the nasal olfactory area. Microbiol. Spectr. 12, e0154923 (2024).

Article 
PubMed 

Google Scholar
 

Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented Filamentous Bacteria. Cell 139, 485–498 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Extremera, N. & Rey, L. The moderator role of emotion regulation ability in the link between stress and well-being.Front. Psychol. 6, 1632 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

O’Neil, A. et al. Relationship between diet and mental health in children and adolescents: a systematic review. Am. J. Public Health 104, e31–e42 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stewart, E. M., Landry, S., Edwards, B. A. & Drummond, S. P. A. In The Wiley Encyclopedia of Health Psychology 165–188 (John Wiley & Sons, Ltd, 2020).

Baker, S. H. A., El-Barrawy, M. A., Omran, E. A. & Raslan, H. S. Occurrence of some oral potentially pathogenic microorganisms and their associated risk factors. J. High. Inst. Public Health 47, 69–75 (2017).

Article 

Google Scholar
 

Kraimi, N. et al. Microbiota and stress: a loop that impacts memory. Psychoneuroendocrinology 136, 105594 (2022).

Article 
PubMed 

Google Scholar
 

Cecchini, L. et al. The Bern Birth Cohort (BeBiCo) to study the development of the infant intestinal microbiota in a high-resource setting in Switzerland: rationale, design, and methods. BMC Pediatr. 23, 560 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Divella, R. et al. Diet, probiotics and physical activity: the right allies for a healthy microbiota. Anticancer Res. 41, 2759–2772 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Dimitri-Pinheiro, S., Soares, R. & Barata, P. The microbiome of the nose—friend or foe?. Allergy Rhinol.11, 2152656720911605 (2020).

Article 

Google Scholar
 

Lorimer, J. Gut buddies: multispecies studies and the microbiome. Environ. Humanit. 8, 57–76 (2016).

Article 

Google Scholar
 

Wilson, A. S. et al. Diet and the human gut microbiome: an international review. Dig. Dis. Sci. 65, 723–740 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol.-Gastrointest. Liver Physiol. 302, G966–G978 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monda, V. et al. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev. 2017, 3831972 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Melnik, A. V. et al. The molecular effect of wearing silver-threaded clothing on the human skin. MSystems 8, e0092222 (2023).

Article 
PubMed 

Google Scholar
 

Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Vries, L. P., van de Weijer, M. P. & Bartels, M. The human physiology of well-being: a systematic review on the association between neurotransmitters, hormones, inflammatory markers, the microbiome and well-being. Neurosci. Biobehav. Rev. 139, 104733 (2022).

Article 
PubMed 

Google Scholar
 

Pigott, T. D. & Polanin, J. R. Methodological guidance paper: high-quality meta-analysis in a systematic review. Rev. Educ. Res. 90, 24–46 (2020).

Article 

Google Scholar
 

Kraut, R. The Quality of Life Vol. 1 (Oxford University Press, 2018).

Babineau, J. Product review: covidence (systematic review software). J. Can. Health Libr Assoc. 35, 68 (2014).

Article 

Google Scholar
 

National Heart, Lung, and Blood Institute. Study Quality Assessment Tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (2021).

Pallen, M. J. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int. J. Syst. Evolut. Microbiol. 74, 006508 (2024).

Article 

Google Scholar
 

McNair, D., Lorr, M. & Droppleman, L. EITS Manual for the Profile of Mood States (Editorial and Industrial Testing Service, 1971).

Hays, R. D. & Morales, L. S. The RAND-36 measure of health-related quality of life. Ann. Med. 33, 350–357 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Thompson, E. R. Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). J. Cross-Cultural Psychol. 38, 227–242 (2007).

Article 

Google Scholar
 

Grossi, E. et al. Development and validation of the short version of the Psychological General Well-Being Index (PGWB-S). Health Qual. Life Outcomes 4, 88 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McHorney, C. A., Ware, J. E. J., Rachel Lu, J. F. & Sherbourne, C. D. The MOS 36-ltem Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 32, 40 (1994).

Article 
CAS 
PubMed 

Google Scholar
 

Spanier, G. B. Measuring dyadic adjustment: new scales for assessing the quality of marriage and similar dyads. J. Marriage Fam. 38, 15–28 (1976).

Article 

Google Scholar
 

The WHOQOL Group. Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol. Med. 28, 551–558 (1998).

Article 

Google Scholar
 

Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 2014).

Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Soft. 36, 1–48 (2010).

Article 

Google Scholar
 

Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 30, 261–293 (2005).

Article 

Google Scholar
 

Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101–129 (1954).

Article 

Google Scholar
 

Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

Article 
PubMed 

Google Scholar
 

Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).

Article 
CAS 
PubMed 

Google Scholar
 

Sterne, J. A. C. & Egger, M. In Publication Bias in Meta-analysis: Prevention, Assessment and Adjustments (eds Rothstein, H. R., Sutton, A. J. & Borenstein, M.) 99–110 (John Wiley & Sons, Ltd, 2005).

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2021).

Orwin, R. G. A fail-safe N for effect size in meta-analysis. J. Educ. Stat. 8, 157–159 (1983).


Google Scholar
 

Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).

Article 
PubMed 

Google Scholar
 

Riley, R. D., Higgins, J. P. T. & Deeks, J. J. Interpretation of random effects meta-analyses. BMJ 342, d549 (2011).

Article 
PubMed 

Google Scholar
 

Kuha, J. AIC and BIC: comparisons of assumptions and performance. Sociol. Methods Res. 33, 188–229 (2004).

Article 

Google Scholar
Â