Joo, K. et al. High performance package-level EMI shielding of Ag epoxy composites with spray method for high frequency FCBGA package application. In Proc. 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC) 674–680 (IEEE, 2018).

Erickson, S. & Sakaguchi, M. Application of package-level high-performance EMI shield material with a novel nozzleless spray coating technology. In Proc. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) 1691–1696 (IEEE, 2020).

Zwenger, C. Enabling the 5G RF front-end module evolution with the DSMBGA package. Chip Scale Rev. 25, 26–33 (2021).


Google Scholar
 

Zhang, X., Zhang, B. & Sun, R. Effective conformal EMI shielding coating for SiP modules with multi-shaped nano-Ag fillers. In Proc. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT) 1–4 (IEEE, 2022).

Chung, D. D. L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 9, 350–354 (2000).

Article 

Google Scholar
 

Peng, M. & Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021).

Article 
ADS 

Google Scholar
 

Isari, A. A., Ghaffarkhah, A., Hashemi, S. A., Wuttke, S. & Arjmand, M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36, 2310683 (2024).

Article 

Google Scholar
 

Ji, K., Zhao, H., Zhang, J., Chen, J. & Dai, Z. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014).

Article 
ADS 

Google Scholar
 

Lee, S. H. et al. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017).

Article 
PubMed 

Google Scholar
 

Wu, S. et al. Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018).

Article 

Google Scholar
 

Zeng, Z. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020).

Article 

Google Scholar
 

Choi, H. K. et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 15, 829–839 (2021).

Article 
PubMed 

Google Scholar
 

Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).

Article 

Google Scholar
 

Zhou, Z. et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019).

Article 

Google Scholar
 

Han, M. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019).

Article 
ADS 

Google Scholar
 

Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Cheng, Y. et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916–4924 (2022).

Article 
ADS 

Google Scholar
 

Zhang, Y., Ruan, K., Zhou, K. & Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023).

Article 

Google Scholar
 

Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

Article 
PubMed 

Google Scholar
 

Yoo, J.-Y. et al. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat. Med. 29, 3137–3148 (2023).

Article 
PubMed 

Google Scholar
 

Sakuma, K. et al. CMOS-compatible wearable sensors fabricated using controlled spalling. IEEE Sens. J. 19, 7868–7874 (2019).

Article 
ADS 

Google Scholar
 

Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).

Article 

Google Scholar
 

Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Das Sharma, D. & Mahajan, R. V. Advanced packaging of chiplets for future computing needs. Nat. Electron. 7, 425–427 (2024).

Article 

Google Scholar
 

Schmitz, J. Low temperature thin films for next-generation microelectronics (invited). Surf. Coat. Technol. 343, 83–88 (2018).

Article 

Google Scholar
 

Yun, T. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020).

Article 

Google Scholar
 

Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 17, 1–10 (1981).

Article 

Google Scholar
 

Das, N. C. et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009).

Article 

Google Scholar
 

Han, M. et al. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano 14, 5008–5016 (2020).

Article 
PubMed 

Google Scholar
 

Xing, Y. et al. Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 15, 5787–5797 (2023).

Article 
PubMed 

Google Scholar
 

Iqbal, A., Sambyal, P. & Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).

Article 

Google Scholar
 

Song, W.-L. et al. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J Mater Chem C Mater 2, 5057–5064 (2014).

Article 

Google Scholar
 

Song, P. et al. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 34, 101264 (2022).

Article 

Google Scholar
 

Calister, W. D. Jr & Rethwisch, D. G. Materials Science and Engineering: An Introduction, 10th edn (Wiley, 2018).

Liu, J. & Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Mater. 35, 2407439 (2025).

Article 

Google Scholar
 

Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Fei, Y. et al. Recent progress in TiO2-based microwave absorption materials. Nanoscale 15, 12193–12211 (2023).

Article 
PubMed 

Google Scholar
 

Wang, J. et al. Heterojunction engineering and ideal factor optimization toward efficient MINP perovskite solar cells. Adv. Energy Mater. 11, 2102724 (2021).

Article 

Google Scholar
 

Hong, J. et al. Electromagnetic shielding of optically-transparent and electrically-insulating ionic solutions. Chem. Eng. J. 438, 135564 (2022).

Article 

Google Scholar
 

Liu, J., Yu, M.-Y., Yu, Z.-Z. & Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023).

Article 

Google Scholar
 

Yeon, H.-W. et al. Cu diffusion-driven dynamic modulation of the electrical properties of amorphous oxide semiconductors. Adv. Funct. Mater. 27, 1700336 (2017).

Article 

Google Scholar
 

Kaloyeros, A. E. & Eisenbraun, E. Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu. Rev. Mater. Sci. 30, 363–385 (2000).

Article 
ADS 

Google Scholar
 

Zaed, M. A. et al. Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceram. 17, 100526 (2024).

Article 

Google Scholar
 

Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

Article 

Google Scholar
 

Guisbiers, G. & José-Yacaman, M. in Enclyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (ed. Wandelt, K.) 875–885 (Elsevier, 2018).

Tokuda, K., Ogino, T., Kotera, M. & Nishino, T. Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polym. J. 47, 66–70 (2015).

Article 

Google Scholar
 

Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Davuluri, P. & Chen, C. Radio frequency interference due to USB3 connector radiation. In Proc. 2013 IEEE International Symposium on Electromagnetic Compatibility 632–635 (IEEE, 2013).