Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).

Article 
PubMed 

Google Scholar
 

Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

Article 
PubMed 

Google Scholar
 

Codol, O., Michaels, J. A., Kashefi, M., Pruszynski, J. A. & Gribble, P. L. MotorNet, a Python toolbox for controlling differentiable biomechanical effectors with artificial neural networks. eLife 12, RP88591 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976).

Article 
PubMed 

Google Scholar
 

Churchland, M. M., Santhanam, G. & Shenoy, K. V. Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach. J. Neurophysiol. 96, 3130–3146 (2006).

Article 
PubMed 

Google Scholar
 

Messier, J. & Kalaska, J. F. Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. J. Neurophysiol. 84, 152–165 (2000).

Article 
PubMed 

Google Scholar
 

Weinrich, M., Wise, S. P. & Mauritz, K. H. A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107, 385–414 (1984).

Article 
PubMed 

Google Scholar
 

Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Riehle, A. & Requin, J. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J. Neurophysiol. 61, 534–549 (1989).

Article 
PubMed 

Google Scholar
 

Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

Article 
PubMed 

Google Scholar
 

Churchland, M. M., Afshar, A. & Shenoy, K. V. A central source of movement variability. Neuron 52, 1085–1096 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Riehle, A. & Requin, J. The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav. Brain Res. 53, 35–49 (1993).

Article 
PubMed 

Google Scholar
 

Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G. & Shenoy, K. V. Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26, 3697–3712 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Michaels, J. A., Dann, B., Intveld, R. W. & Scherberger, H. Predicting reaction time from the neural state space of the premotor and parietal grasping network. J. Neurosci. 35, 11415–11432 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Churchland, M. M. & Shenoy, K. V. Delay of movement caused by disruption of cortical preparatory activity. J. Neurophysiol. 97, 348–359 (2007).

Article 
PubMed 

Google Scholar
 

Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Logiaco, L., Abbott, L. F. & Escola, S. Thalamic control of cortical dynamics in a model of flexible motor sequencing. Cell Rep. 35, 109090 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A. & Scherberger, H. A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping. Proc. Natl Acad. Sci. USA 117, 32124–32135 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

Article 
PubMed 

Google Scholar
 

Crevecoeur, F. & Scott, S. H. Priors engaged in long-latency responses to mechanical perturbations suggest a rapid update in state estimation. PLoS Comput. Biol. 9, e1003177 (2013).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Pruszynski, J. A. & Scott, S. H. Optimal feedback control and the long-latency stretch response. Exp. Brain Res. 218, 341–359 (2012).

Article 
PubMed 

Google Scholar
 

Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pruszynski, J. A. et al. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390 (2011).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Evarts, E. V. & Tanji, J. Gating of motor cortex reflexes by prior instruction. Brain Res. 71, 479–494 (1974).

Article 
PubMed 

Google Scholar
 

Pruszynski, J. A., Omrani, M. & Scott, S. H. Goal-dependent modulation of fast feedback responses in primary motor cortex. J. Neurosci. 34, 4608–4617 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Omrani, M., Murnaghan, C. D., Pruszynski, J. A. & Scott, S. H. Distributed task-specific processing of somatosensory feedback for voluntary motor control. eLife 5, e13141 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Picard, N. & Smith, A. M. Primary motor cortical responses to perturbations of prehension in the monkey. J. Neurophysiol. 68, 1882–1894 (1992).

Article 
PubMed 

Google Scholar
 

Evarts, E. V. & Fromm, C. Sensory responses in motor cortex neurons during precise motor control. Neurosci. Lett. 5, 267–272 (1977).

Article 
PubMed 

Google Scholar
 

Wolpaw, J. R. Amplitude of responses to perturbation in primate sensorimotor cortex as a function of task. J. Neurophysiol. 44, 1139–1147 (1980).

Article 
PubMed 

Google Scholar
 

Reschechtko, S. & Pruszynski, J. A. Stretch reflexes. Curr. Biol. 30, R1025–R1030 (2020).

Article 
PubMed 

Google Scholar
 

Cheney, P. D. & Fetz, E. E. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J. Physiol. 349, 249–272 (1984).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pruszynski, J. A., Kurtzer, I., Lillicrap, T. P. & Scott, S. H. Temporal evolution of automatic gain-scaling. J. Neurophysiol. 102, 992–1003 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lara, A. H., Elsayed, G. F., Zimnik, A. J., Cunningham, J. P. & Churchland, M. M. Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. eLife 7, e31826 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaufman, M. T. et al. The largest response component in the motor cortex reflects movement timing but not movement type. eNeuro 3, ENEURO.0085-16.2016 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Nat. Neurosci. 28, 1562–1575 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Darian-Smith, C., Tan, A. & Edwards, S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J. Comp. Neurol. 410, 211–234 (1999).

Article 
PubMed 

Google Scholar
 

Horne, M. K. & Tracey, D. J. The afferents and projections of the ventroposterolateral thalamus in the monkey. Exp. Brain Res. 36, 129–141 (1979).

ADS 
PubMed 

Google Scholar
 

Morel, A., Liu, J., Wannier, T., Jeanmonod, D. & Rouiller, E. M. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey: Thalamocortical connections of premotor cortex. Eur. J. Neurosci. 21, 1007–1029 (2005).

Article 
PubMed 

Google Scholar
 

Rouiller, E. M., Liang, F., Babalian, A., Moret, V. & Wiesendanger, M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J. Comp. Neurol. 345, 185–213 (1994).

Article 
PubMed 

Google Scholar
 

Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mauritz, K. H. & Wise, S. P. Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp. Brain Res. 61, 229–244 (1986).

Article 
PubMed 

Google Scholar
 

Glaser, J. I., Perich, M. G., Ramkumar, P., Miller, L. E. & Kording, K. P. Population coding of conditional probability distributions in dorsal premotor cortex. Nat. Commun. 9, 1788 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rickert, J., Riehle, A., Aertsen, A., Rotter, S. & Nawrot, M. P. Dynamic encoding of movement direction in motor cortical neurons. J. Neurosci. 29, 13870–13882 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bastian, A., Schöner, G. & Riehle, A. Preshaping and continuous evolution of motor cortical representations during movement preparation. Eur. J. Neurosci. 18, 2047–2058 (2003).

Article 
PubMed 

Google Scholar
 

Smoulder, A. L. et al. A neural basis of choking under pressure. Neuron 112, 3424–3433.e8 (2024).

Article 
PubMed 

Google Scholar
 

Selen, L. P. J., Shadlen, M. N. & Wolpert, D. M. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32, 2276–2286 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

Article 
PubMed 

Google Scholar
 

Turecek, J. & Ginty, D. D. Coding of self and environment by Pacinian neurons in freely moving animals. Neuron 112, 3267–3277.e6 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dimitriou, M. & Edin, B. B. Human muscle spindles act as forward sensory models. Curr. Biol. 20, 1763–1767 (2010).

Article 
PubMed 

Google Scholar
 

Jiang, L. P. & Rao, R. P. N. Predictive coding theories of cortical function. in Oxford Research Encyclopedia of Neuroscience https://doi.org/10.1093/acrefore/9780190264086.013.328 (2022).

Richter, D., Kietzmann, T. C. & de Lange, F. P. High-level visual prediction errors in early visual cortex. PLoS Biol. 22, e3002829 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically enhance learning and memory. eLife 10, e61077 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. S., Sarma, A. A., Sejnowski, T. J. & Doyle, J. C. Internal feedback in the cortical perception-action loop enables fast and accurate behavior. Proc. Natl Acad. Sci. USA 120, e2300445120 (2023).

Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar
 

Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

Article 
PubMed 

Google Scholar
 

Miall, R. C., Christensen, L. O. D., Cain, O. & Stanley, J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 5, e316 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Diedrichsen, J., Criscimagna-Hemminger, S. E. & Shadmehr, R. Dissociating timing and coordination as functions of the cerebellum. J. Neurosci. 27, 6291–6301 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hore, J. & Vilis, T. Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. J. Neurophysiol. 51, 1137–1148 (1984).

Article 
PubMed 

Google Scholar
 

Scott, S. H. Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J. Neurosci. Methods 89, 119–127 (1999).

Article 
PubMed 

Google Scholar
 

Matthews, P. B. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J. Physiol. 374, 73–90 (1986).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pruszynski, J. A., Kurtzer, I. & Scott, S. H. Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J. Neurophysiol. 100, 224–238 (2008).

Article 
PubMed 

Google Scholar
 

Jung, B. et al. A comprehensive macaque fMRI pipeline and hierarchical atlas. Neuroimage 235, 117997 (2021).

Article 
PubMed 

Google Scholar
 

Seidlitz, J. et al. A population MRI brain template and analysis tools for the macaque. Neuroimage 170, 121–131 (2018).

Article 
PubMed 

Google Scholar
 

Reveley, C. et al. Three-dimensional digital template atlas of the macaque brain. Cereb. Cortex 27, 4463–4477 (2017).

PubMed 

Google Scholar
 

Hartig, R. et al. The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging. Neuroimage 235, 117996 (2021).

Article 
PubMed 

Google Scholar
 

Hirai, T. & Jones, E. G. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res. Rev. 14, 1–34 (1989).

Article 
PubMed 

Google Scholar
 

Boussard, J., Varol, E., Lee, H. D., Dethe, N. & Paninski, L. Three-dimensional spike localization and improved motion correction for Neuropixels recordings. Preprint at bioRxiv https://doi.org/10.1101/2021.11.05.467503 (2021).

Varol, E. et al. in ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing 1085–1089 (IEEE, 2021).

Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743 (1985).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003).

Article 
PubMed 

Google Scholar
 

Kistemaker, D. A., Wong, J. D. & Gribble, P. L. The central nervous system does not minimize energy cost in arm movements. J. Neurophysiol. 104, 2985–2994 (2010).

Article 
PubMed 

Google Scholar
 

Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. 13th International Conference on Artificial Intelligence and Statistics 249–256 (JMLR, 2010).

Hu, W., Xiao, L. & Pennington, J. Provable benefit of orthogonal initialization in optimizing deep linear networks. Preprint at https://doi.org/10.48550/arXiv.2001.05992 (2020).

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).

Scott, M. & Su-In, L. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).


Google Scholar
 

Shapley, L. S. in Contribution to the Theory of Games (eds Kuhn, H. & Tucker, A.) 307–317 (Princeton Univ. Press, 1953).

Diedrichsen, J. & Kriegeskorte, N. Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Michaels, J. A. & Pruszynski, J. A. Data from: Sensory expectations shape neural population dynamics in motor circuits [Dataset]. Dryad https://doi.org/10.5061/dryad.0vt4b8hbr (2025).