Boruc, J., Zhou, X. & Meier, I. Dynamics of the plant nuclear envelope and nuclear pore. Plant Physiol. 158, 78–86 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Raices, M. & D’Angelo, M. A. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat. Rev. Mol. Cell Biol. 13, 687–699 (2012).

Article 
PubMed 
CAS 

Google Scholar
 

Sun, J., Shi, Y. & Yildirim, E. The nuclear pore complex in cell type-specific chromatin structure and gene regulation. Trends Genet. 35, 579–588 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Kramarz, K. et al. The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nat. Commun. 11, 5643 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Meier, I., Richards, E. J. & Evans, D. E. Cell biology of the plant nucleus. Annu. Rev. Plant Biol. 68, 139–172 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Lin, D. H. & Hoelz, A. The structure of the nuclear pore complex (an update). Annu. Rev. Biochem. 88, 725–783 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hoelz, A., Debler, E. W. & Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613–643 (2011).

Article 
PubMed 
CAS 

Google Scholar
 

von Appen, A. & Beck, M. Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J. Mol. Biol. 428, 2001–2010 (2016).

Article 

Google Scholar
 

Akey, C. W. et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 185, 361–378.e325 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

Article 
PubMed 
CAS 

Google Scholar
 

Eibauer, M. et al. Structure and gating of the nuclear pore complex. Nat. Commun. 6, 7532 (2015).

Article 
PubMed 
CAS 

Google Scholar
 

Mosalaganti, S. et al. In situ architecture of the algal nuclear pore complex. Nat. Commun. 9, 2361 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Zhu, X. et al. Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex. Science 376, eabl8280 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Zimmerli, C. E. et al. Nuclear pores dilate and constrict in cellulo. Science 374, eabd9776 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Bley, C. J. et al. Architecture of the cytoplasmic face of the nuclear pore. Science 376, eabm9129 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Fontana, P. et al. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 376, eabm9326 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ibarra, A. & Hetzer, M. W. Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337–349 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kim, S. J. et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475–482 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell 1, 223–234 (1998).

Article 
PubMed 
CAS 

Google Scholar
 

Huang, G. et al. Cryo-EM structure of the inner ring from the Xenopus laevis nuclear pore complex. Cell Res. 32, 451–460 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhang, Y. et al. Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res. 30, 532–540 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Von Appen, A. et al. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

Article 

Google Scholar
 

Sanchez Carrillo, I. B., Hoffmann, P. C., Barff, T., Beck, M. & Germain, H. Preparing Arabidopsis thaliana root protoplasts for cryo electron tomography. Front. Plant Sci. https://doi.org/10.3389/fpls.2023.1261180 (2023).

Koornneef, M. & Meinke, D. The development of Arabidopsis as a model plant. Plant J. 61, 909–921 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Krämer, U. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 4, e06100 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

Woodward, A. W. & Bartel, B. Biology in bloom: a primer on the Arabidopsis thaliana model system. Genetics 208, 1337–1349 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Davey, M. R., Anthony, P., Power, J. B. & Lowe, K. C. Plant protoplasts: status and biotechnological perspectives. Biotechnol. Adv. 23, 131–171 (2005).

Article 
PubMed 
CAS 

Google Scholar
 

Reyna-Llorens, I., Ferro-Costa, M. & Burgess, S. J. Plant protoplasts in the age of synthetic biology. J. Exp. Bot. https://doi.org/10.1093/jxb/erad172 (2023).

Shaw, R., Tian, X. & Xu, J. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14, 115–126 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466–1475 (2001).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yoo, S.-D., Cho, Y.-H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

Article 
PubMed 
CAS 

Google Scholar
 

Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197, 73–82 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Saxena, P. K., Fowke, L. C. & King, J. An efficient procedure for isolation of nuclei from plant protoplasts. Protoplasma 128, 184–189 (1985).

Article 

Google Scholar
 

Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T. & Hara-Nishimura, I. Identification and characterization of nuclear porecomplex components in Arabidopsis thaliana. Plant Cell 22, 4084–4097 (2010).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tamura, K. & Hara-Nishimura, I. The molecular architecture of the plant nuclear pore complex. J. Exp. Bot. 64, 823–832 (2012).

Article 
PubMed 

Google Scholar
 

Tang, Y., Huang, A. & Gu, Y. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat. Plants 6, 838–847 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Tang, Y., Ho, M. I., Kang, B.-H. & Gu, Y. GBPL3 localizes to the nuclear pore complex and functionally connects the nuclear basket with the nucleoskeleton in plants. PLoS Biol. 20, e3001831 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, X. et al. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proc. Natl Acad. Sci. USA 117, 26389–26397 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gu, Y. et al. Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166, 1526–1538 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tang, Y. et al. Proxiome assembly of the plant nuclear pore reveals an essential hub for gene expression regulation. Nat. Plants https://doi.org/10.1038/s41477-024-01698-9 (2024).

Kelley, K., Knockenhauer, K. E., Kabachinski, G. & Schwartz, T. U. Atomic structure of the Y complex of the nuclear pore. Nat. Struct. Mol. Biol. 22, 425–431 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Holzer, G. & Antonin, W. Breaking the Y. PLoS Genet. 15, e1008109 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Asakawa, H. et al. Asymmetrical localization of NUP107–160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genet. 15, e1008061 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Belgareh, N. M. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Binder, A. & Parniske, M. Analysis of the Lotus japonicus nuclear pore NUP107–160 subcomplex reveals pronounced structural plasticity and functional redundancy. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00552 (2014).

Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Stuwe, T. et al. Architecture of the nuclear pore complex coat. Science 347, 1148–1152 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Walther, T. C. et al. The conserved NUP107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

Article 
PubMed 
CAS 

Google Scholar
 

Wiermer, M. et al. Putative members of the Arabidopsis NUP107–160 nuclear pore sub-complex contribute to pathogen defense. Plant J. 70, 796–808 (2012).

Article 
PubMed 
CAS 

Google Scholar
 

Bui, K. H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

Article 
PubMed 
CAS 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2023).

Article 
PubMed Central 

Google Scholar
 

Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Faure, G. et al. iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach. Source Code Biol. Med. 14, 5 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Makarov, A. A., Padilla-Mejia, N. E. & Field, M. C. Evolution and diversification of the nuclear pore complex. Biochem. Soc. Trans. 49, 1601–1619 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cheng, Z. et al. Nup96 and HOS1 are mutually stabilized and gate CONSTANS protein level, conferring long-day photoperiodic flowering regulation in Arabidopsis. Plant Cell 32, 374–391 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fernandez-Martinez, J. & Rout, M. P. One ring to rule them all? Structural and functional diversity in the nuclear pore complex. Trends Biochem. Sci. 46, 595–607 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hoffmann, P. C. et al. Nuclear pore permeability and fluid flow are modulated by its dilation state. Mol. Cell 85, 537–554 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Klughammer, N. et al. Diameter dependence of transport through nuclear pore complex mimics studied using optical nanopores. eLife 12, RP87174 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gallemí, M. et al. DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis. Development 143, 1623–1631 (2016).

PubMed 

Google Scholar
 

Ito, N. et al. Nuclear pore complex proteins are involved in centromere distribution. Iscience 27, 2 (2024).

Article 

Google Scholar
 

Jiang, S. et al. Nucleoporin Nup98 participates in flowering regulation in a CONSTANS-independent mode. Plant Cell Rep. 38, 1263–1271 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Mermet, S. et al. Evolutionarily conserved protein motifs drive interactions between the plant nucleoskeleton and nuclear pores. Plant Cell 35, 4284–4303 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Neumann, N., Jeffares, D. C. & Poole, A. M. Outsourcing the nucleus: nuclear pore complex genes are no longer encoded in nucleomorph genomes. Evol. Bioinform. 2, 117693430600200023 (2006).

Article 

Google Scholar
 

Xiao, L. et al. Two Nucleoporin98 homologous genes jointly participate in the regulation of starch degradation to repress senescence in Arabidopsis. BMC Plant Biol. 20, 292 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Teimer, R., Kosinski, J., von Appen, A., Beck, M. & Hurt, E. A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nat. Commun. 8, 1107 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dong, C.-H., Agarwal, M., Zhang, Y., Xie, Q. & Zhu, J.-K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl Acad. Sci. USA 103, 8281–8286 (2006).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Han, S.-H., Park, Y.-J. & Park, C.-M. Publisher correction: HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants 7, 237 (2021).

Article 
PubMed 

Google Scholar
 

Lee, K. & Seo, P. J. The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regul. 76, 157–165 (2015).

Article 
CAS 

Google Scholar
 

Margalha, L. et al. HOS1 promotes plant tolerance to low-energy stress via the SnRK1 protein kinase. Plant J. 115, 627–641 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Shkryl, Y. et al. CRISPR–Cas9-mediated knockout of HOS1 reveals its role in the regulation of secondary metabolism in Arabidopsis thaliana. Plants 10, 104 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, C., Liu, L., Teo, Z. W. N., Shen, L. & Yu, H. Nucleoporin 160 regulates flowering through anchoring HOS1 for destabilizing CO in Arabidopsis. Plant Commun. 1, 100033 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Beck, M., Lučić, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

Article 
PubMed 
CAS 

Google Scholar
 

O’Malley, M. A., Leger, M. M., Wideman, J. G. & Ruiz-Trillo, I. Concepts of the last eukaryotic common ancestor. Nat. Ecol. Evol. 3, 338–344 (2019).

Article 
PubMed 

Google Scholar
 

Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zila, V. et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 184, 1032–1046.e1018 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Fiserova, J., Kiseleva, E. & Goldberg, M. W. Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J. 59, 243–255 (2009).

Article 
PubMed 
CAS 

Google Scholar
 

Pöge, M. et al. Making plant tissue accessible for cryo-electron tomography. eLife 14, RP106455 (2025).

Singh, D. et al. The molecular architecture of the nuclear basket. Cell 187, 5267–5281.e5213 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Bargmann, B. O. & Birnbaum, K. D. Fluorescence activated cell sorting of plant protoplasts. J. Vis. Exp. https://doi.org/10.3791/1673 (2010).

Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

Article 
PubMed 
CAS 

Google Scholar
 

Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 4, 1265–1272 (2005).

Article 
CAS 

Google Scholar
 

Beck, M., Mosalaganti, S. & Kosinski, J. From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Curr. Opin. Struct. Biol. 52, 32–40 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

Article 
PubMed 

Google Scholar
 

Hoffmann, P. C. et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat. Commun. 13, 7435 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199, 187–195 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Allegretti, M. et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586, 796–800 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Ermel, U. H., Arghittu, S. M. & Frangakis, A. S. ArtiaX: an electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci. 31, e4472 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

Yu, D., Chojnowski, G., Rosenthal, M. & Kosinski, J. AlphaPulldown—a Python package for protein–protein interaction screens using AlphaFold-Multimer. Bioinformatics https://doi.org/10.1093/bioinformatics/btac749 (2022).

Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Rantos, V., Karius, K. & Kosinski, J. Integrative structural modeling of macromolecular complexes using Assembline. Nat. Protoc. 17, 152–176 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Webb, B. et al. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 27, 245–258 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Saltzberg, D. et al. in Biomolecular Simulations: Methods and Protocols (eds Bonomi, M. & Camilloni, C.) 353–377 (Springer, 2019).

Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

Article 
PubMed Central 

Google Scholar