Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).

CAS 

Google Scholar
 

Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gong, M. et al. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits. Natl Sci. Rev. 9, nwab011 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Marcos, D., Rabl, P., Rico, E. & Zoller, P. Superconducting circuits for quantum simulation of dynamical gauge fields. Phys. Rev. Lett. 111, 110504 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, K. et al. Synthesizing five-body interaction in a superconducting quantum circuit. Phys. Rev. Lett. 128, 190502 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kollár, A. J., Fitzpatrick, M. & Houck, A. A. Hyperbolic lattices in circuit quantum electrodynamics. Nature 571, 45–50 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Andersen, T. I. et al. Thermalization and criticality on an analogue-digital quantum simulator. Nature 638, 79–85 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).

CAS 

Google Scholar
 

Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gyenis, András et al. Experimental realization of a protected superconducting circuit derived from the 0–π qubit. PRX Quantum 2, 010339 (2021).

Article 

Google Scholar
 

Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf. 8, 3 (2022).

Article 
ADS 

Google Scholar
 

Gao, D. et al. Establishing a new benchmark in quantum computational advantage with 105-qubit Zuchongzhi 3.0 processor. Phys. Rev. Lett. 134, 090601 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gordon, R. T. et al. Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits. Appl. Phys. Lett. 120, 074002 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Deng, H. et al. Titanium nitride film on sapphire substrate with low dielectric loss for superconducting qubits. Phys. Rev. Appl. 19, 024013 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Biznárová, J. et al. Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits. npj Quantum Inf. 10, 78 (2024).

Article 
ADS 

Google Scholar
 

Bal, M. et al. Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation. npj Quantum Inf. 10, 43 (2024).

Article 
ADS 

Google Scholar
 

Kono, S. et al. Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms. Nat. Commun. 15, 3950 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tuokkola, M. et al. Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit. Nat. Commun. 16, 5421 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Read, A. P. et al. Precision measurement of the microwave dielectric loss of sapphire in the quantum regime with parts-per-billion sensitivity. Phys. Rev. Appl. 19, 034064 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, Z.-H. et al. Acceptor-induced bulk dielectric loss in superconducting circuits on silicon. Phys. Rev. X 14, 041022 (2024).

CAS 

Google Scholar
 

Lozano, D. P. et al. Low-loss α-tantalum coplanar waveguide resonators on silicon wafers: fabrication, characterization and surface modification. Mater. Quantum Technol. 4, 025801 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Martinis, J. M. & Megrant, A. UCSB final report for the CSQ program: review of decoherence and materials physics for superconducting qubits. Preprint at https://arxiv.org/abs/1410.5793 (2014).

McRae, C. R. H. et al. Reproducible coherence characterization of superconducting quantum devices. Appl. Phys. Lett. 119, 100501 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Klimov, P. V. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, C. et al. Surface participation and dielectric loss in superconducting qubits. Appl. Phys. Lett. 107, 162601 (2015).

Article 
ADS 

Google Scholar
 

Schlör, S. et al. Correlating decoherence in transmon qubits: low frequency noise by single fluctuators. Phys. Rev. Lett. 123, 190502 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

Article 
ADS 

Google Scholar
 

Dwyer, B. L. et al. Probing spin dynamics on diamond surfaces using a single quantum sensor. PRX Quantum 3, 040328 (2022).

Article 
ADS 

Google Scholar
 

Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

Article 
CAS 

Google Scholar
 

Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yan, F. et al. Distinguishing coherent and thermal photon noise in a circuit quantum electrodynamical system. Phys. Rev. Lett. 120, 260504 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005).

Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

Article 
ADS 

Google Scholar
 

Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011).

Article 
ADS 

Google Scholar
 

Chow, J. M. et al. Optimized driving of superconducting artificial atoms for improved single-qubit gates. Phys. Rev. A 82, 040305 (2010).

Article 
ADS 

Google Scholar
 

Li, Z. et al. Error per single-qubit gate below 10−4 in a superconducting qubit. npj Quantum Inf. 9, 111 (2023).

Article 
ADS 

Google Scholar
 

Hyyppä, E. et al. Reducing leakage of single-qubit gates for superconducting quantum processors using analytical control pulse envelopes. PRX Quantum 5, 030353 (2024).

Article 
ADS 

Google Scholar
 

Sunada, Y. et al. Photon-noise-tolerant dispersive readout of a superconducting qubit using a nonlinear Purcell filter. PRX Quantum 5, 010307 (2024).

Article 
ADS 

Google Scholar
 

Zhang, G., Liu, Y., Raftery, J. J. & Houck, A. A. Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit. npj Quantum Inf. 3, 1 (2017).

Article 
ADS 

Google Scholar
 

Chang, R. D. et al. Eliminating surface oxides of superconducting circuits with noble metal encapsulation. Phys. Rev. Lett. 134, 097001 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bhatia, E. et al. Chemical mechanical planarization for Ta-based superconducting quantum devices. J. Vac. Sci. Technol. B 41, 033202 (2023).

Article 
CAS 

Google Scholar
 

Van Damme, J. et al. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634, 74–79 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Tripathi, V. et al. Suppression of crosstalk in superconducting qubits using dynamical decoupling. Phys. Rev. Appl. 18, 024068 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Connolly, T. et al. Coexistence of nonequilibrium density and equilibrium energy distribution of quasiparticles in a superconducting qubit. Phys. Rev. Lett. 132, 217001 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bahrami, F. et al. Vortex motion induced losses in tantalum resonators. Preprint at https://arxiv.org/abs/2503.03168 (2025).

McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2021).

Article 

Google Scholar
 

Harrington, P. M. et al. Synchronous detection of cosmic rays and correlated errors in superconducting qubit arrays. Nat. Commun. 16, 6428 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cao, Z. H., Li, P. Y. & Meng, X. K. Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films. Mater. Sci. Eng. A 516, 253–258 (2009).

Article 

Google Scholar
 

Stefanazzi, L. et al. The QICK (Quantum Instrumentation Control Kit): readout and control for qubits and detectors. Rev. Sci. Instrum. 93, 044709 (2022).

Article 
CAS 
PubMed 

Google Scholar