Gezari, S. Tidal disruption events. Annu. Rev. Astron. Astrophys. 59, 21–58 (2021).

Article 
ADS 

Google Scholar
 

Komossa, S. et al. The extremes of AGN variability: outbursts, deep fades, changing looks, exceptional spectral states, and semi-periodicities. Adv. Space Res. https://doi.org/10.1016/j.asr.2025.04.058 (2025).

LaMassa, S. M. et al. The discovery of the first ‘changing look’ quasar: new insights into the physics and phenomenology of active galactic nucleus. Astrophys. J. 800, 144 (2015).

Article 
ADS 

Google Scholar
 

MacLeod, C. L. et al. Changing-look quasar candidates: first results from follow-up spectroscopy of highly optically variable quasars. Astrophys. J. 874, 8 (2019).

Article 
ADS 

Google Scholar
 

Stern, D. et al. A mid-IR selected changing-look quasar and physical scenarios for abrupt AGN fading. Astrophys. J. 864, 27 (2018).

Article 
ADS 

Google Scholar
 

Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g*. Phys. Rev. Lett. 124, 251102 (2020).

Article 
ADS 

Google Scholar
 

Ricci, C. & Trakhtenbrot, B. Changing-look active galactic nuclei. Nat. Astron. 7, 1282–1294 (2023).

Article 
ADS 

Google Scholar
 

Graham, M. J. et al. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 518, 74–76 (2015).

Article 
ADS 

Google Scholar
 

Masterson, M. et al. Evolution of a relativistic outflow and X-ray corona in the extreme changing-look AGN 1ES 1927+654. Astrophys. J. 934, 35 (2022).

Article 
ADS 

Google Scholar
 

Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019).

Article 
ADS 

Google Scholar
 

Middleton, M., Done, C., Ward, M., Gierliński, M. & Schurch, N. RE J1034+396: the origin of the soft X-ray excess and quasi-periodic oscillation. Mon. Not. R. Astron. Soc. 394, 250–260 (2009).

Article 
ADS 

Google Scholar
 

Wiseman, P. et al. A systematically selected sample of luminous, long-duration, ambiguous nuclear transients. Mon. Not. R. Astron. Soc. 537, 2024–2045 (2025).

Article 
ADS 

Google Scholar
 

Hinkle, J. T. et al. The most energetic transients: tidal disruptions of high-mass stars. Sci. Adv. 11, eadt0074 (2025).

Article 
ADS 

Google Scholar
 

McKernan, B. et al. Starfall: a heavy rain of stars in ‘turning on’ AGN. Mon. Not. R. Astron. Soc. 514, 4102–4110 (2022).

Article 
ADS 

Google Scholar
 

Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).

Article 
ADS 

Google Scholar
 

Hodgkin, S. T., Wyrzykowski, L., Blagorodnova, N. & Koposov, S. Transient astronomy with the Gaia satellite. Philos. Trans. R. Soc. Lond. Ser. A 371, 20120239 (2013).

ADS 

Google Scholar
 

Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

Article 
ADS 

Google Scholar
 

Tonry, J. et al. ATLAS transient discovery report for 2018-07-01. Transient Name Serv. Discov. Rep. 2018-909, 1 (2018).

ADS 

Google Scholar
 

Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

Article 
ADS 

Google Scholar
 

Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

Article 
ADS 

Google Scholar
 

Graham, M. J. et al. Understanding extreme quasar optical variability with CRTS. I. Major AGN flares. Mon. Not. R. Astron. Soc. 470, 4112–4132 (2017).

Article 
ADS 

Google Scholar
 

Graham, M. J. et al. A light in the dark: searching for electromagnetic counterparts to black hole-black hole mergers in LIGO/Virgo O3 with the Zwicky Transient Facility. Astrophys. J. 942, 99 (2023).

Article 
ADS 

Google Scholar
 

Stern, D. et al. Mid-infrared selection of active galactic nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753, 30 (2012).

Article 
ADS 

Google Scholar
 

Stein, R. et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 5, 510–518 (2021).

Article 
ADS 

Google Scholar
 

van Velzen, S. et al. Establishing accretion flares from supermassive black holes as a source of high-energy neutrinos. Mon. Not. R. Astron. Soc. 529, 2559–2576 (2024).

Article 
ADS 

Google Scholar
 

Grishin, E., Bobrick, A., Hirai, R., Mandel, I. & Perets, H. B. Supernova explosions in active galactic nuclear discs. Mon. Not. R. Astron. Soc. 507, 156–174 (2021).

Article 
ADS 

Google Scholar
 

Gu, Y., Zhang, X.-G., Chen, X.-Q., Yang, X. & Liang, E.-W. A candidate of high-z central tidal disruption event in quasar SDSS J000118.70+003314.0. Mon. Not. R. Astron. Soc. 537, 84–96 (2025).

Article 
ADS 

Google Scholar
 

Karmen, M. et al. JWST discovery of a high-redshift tidal disruption event candidate in COSMOS-Web. Astrophys. J. 990, 149–167 (2025).

Article 
ADS 

Google Scholar
 

Perna, R., Lazzati, D. & Cantiello, M. Electromagnetic signatures of relativistic explosions in the disks of active galactic nuclei. Astrophys. J. Lett. 906, L7 (2021).

Article 
ADS 

Google Scholar
 

Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

Article 
ADS 

Google Scholar
 

Woosley, S. E. & Heger, A. The pair-instability mass gap for black holes. Astrophys. J. Lett. 912, L31 (2021).

Article 
ADS 

Google Scholar
 

Renzo, M. & Smith, N. Pair-instability evolution and explosions in massive stars. Preprint at https://arxiv.org/abs/2407.16113 (2024).

Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

Article 
ADS 

Google Scholar
 

Chan, C.-H., Piran, T. & Krolik, J. H. High-energy emission from tidal disruption events in active galactic nuclei. Astrophys. J. 914, 107 (2021).

Article 
ADS 

Google Scholar
 

Wang, Y., Lin, D. N. C., Zhang, B. & Zhu, Z. Changing-look active galactic nuclei behavior induced by disk-captured tidal disruption events. Astrophys. J. Lett. 962, L7 (2024).

Article 
ADS 

Google Scholar
 

Ryu, T. et al. In-plane tidal disruption of stars in discs of active galactic nuclei. Mon. Not. R. Astron. Soc. 527, 8103–8117 (2024).

Article 
ADS 

Google Scholar
 

Prasad, C., Wang, Y., Perna, R., Ford, K. E. S. & McKernan, B. Tidal disruption events from three-body scatterings and eccentricity pumping in the discs of active galactic nuclei. Mon. Not. R. Astron. Soc. 531, 1409–1421 (2024).

Article 
ADS 

Google Scholar
 

Subrayan, B. M. et al. Scary Barbie: an extremely energetic, long-duration tidal disruption event candidate without a detected host galaxy at z = 0.995. Astrophys. J. Lett. 948, L19 (2023).

Article 
ADS 

Google Scholar
 

Guillochon, J. et al. MOSFiT: modular open source fitter for transients. Astrophys. J. Suppl. Ser. 236, 6 (2018).

Article 
ADS 

Google Scholar
 

Kumar, H. et al. AT2023vto: an exceptionally luminous helium tidal disruption event from a massive star. Astrophys. J. Lett. 974, L36 (2024).

Article 
ADS 

Google Scholar
 

Readhead, A. C. S. et al. Compact symmetric objects. III. Evolution of the high-luminosity branch and a possible connection with tidal disruption events. Astrophys. J. 961, 242 (2024).

Article 
ADS 

Google Scholar
 

Goodman, J. & Tan, J. C. Supermassive stars in quasar disks. Astrophys. J. 608, 108–118 (2004).

Article 
ADS 

Google Scholar
 

Nayakshin, S., Cuadra, J. & Springel, V. Simulations of star formation in a gaseous disc around Sgr A* – a failed active galactic nucleus. Mon. Not. R. Astron. Soc. 379, 21–33 (2007).

Article 
ADS 

Google Scholar
 

Bartko, H. et al. An extremely top-heavy initial mass function in the Galactic Center stellar disks. Astrophys. J. 708, 834–840 (2010).

Article 
ADS 

Google Scholar
 

Cantiello, M., Jermyn, A. S. & Lin, D. N. C. Stellar evolution in AGN disks. Astrophys. J. 910, 94 (2021).

Article 
ADS 

Google Scholar
 

Jermyn, A. S., Dittmann, A. J., McKernan, B., Ford, K. E. S. & Cantiello, M. Effects of an immortal stellar population in AGN disks. Astrophys. J. 929, 133 (2022).

Article 
ADS 

Google Scholar
 

Chen, Y.-X., Jiang, Y.-F. & Goodman, J. Accretion of active galactic nucleus stars under the influence of disk geometry. Astrophys. J. 987, 188 (2025).

Article 
ADS 

Google Scholar
 

Davies, M. B. & Lin, D. N. C. Making massive stars in the Galactic Centre via accretion on to low-mass stars within an accretion disc. Mon. Not. R. Astron. Soc. 498, 3452–3456 (2020).

Article 
ADS 

Google Scholar
 

Fabj, G., Dittmann, A. J., Cantiello, M., Perna, R. & Samsing, J. Mapping the outcomes of stellar evolution in the disks of active galactic nuclei. Astrophys. J. 981, 16 (2025).

Article 
ADS 

Google Scholar
 

Mummery, A. The maximum mass of a black hole which can tidally disrupt a star: measuring black hole spins with tidal disruption events. Mon. Not. R. Astron. Soc. 527, 6233–6252 (2024).

Article 
ADS 

Google Scholar
 

Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

Article 
ADS 

Google Scholar
 

Phinney, E. S. Manifestations of a massive black hole in the Galactic Center. Proc. Int. Astron. Union 136, 543–553 (1989).

Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).

Article 
ADS 

Google Scholar
 

Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

Article 
ADS 

Google Scholar
 

Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

Article 
ADS 

Google Scholar
 

Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

Masci, F. J. et al. A new forced photometry service for the Zwicky Transient Facility. Preprint at https://arxiv.org/abs/2305.16279 (2023).

Magnier, E. A. et al. Pan-STARRS photometric and astrometric calibration. Astrophys. J. Suppl. Ser. 251, 6 (2020).

Article 
ADS 

Google Scholar
 

Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

Article 
ADS 

Google Scholar
 

Kelly, B. C., Bechtold, J. & Siemiginowska, A. Are the variations in quasar optical flux driven by thermal fluctuations? Astrophys. J. 698, 895–910 (2009).

Article 
ADS 

Google Scholar
 

Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale Telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).

Article 
ADS 

Google Scholar
 

Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

Article 
ADS 

Google Scholar
 

Wilson, J. C. et al. Mass producing an efficient NIR spectrograph. In Proc. SPIE Conference Series, Ground-based Instrumentation for Astronomy Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 1295–1305 (SPIE, 2004).

Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362–376 (2004).

Article 
ADS 

Google Scholar
 

Vacca, W. D., Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pac. 115, 389–409 (2003).

Article 
ADS 

Google Scholar
 

Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

Article 
ADS 

Google Scholar
 

Temple, M. J., Hewett, P. C. & Banerji, M. Modelling type 1 quasar colours in the era of Rubin and Euclid. Mon. Not. R. Astron. Soc. 508, 737–754 (2021).

Article 
ADS 

Google Scholar
 

Rodríguez-Pascual, P. M. et al. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. IX. Ultraviolet observations of Fairall 9. Astrophys. J. Suppl. Ser. 110, 9–20 (1997).

Article 
ADS 

Google Scholar
 

Schmidt, E. O., Baravalle, L. D. & Rodríguez-Kamenetzky, A. R. Spectroscopic study of the [O iii]λ5007 profile in Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 502, 3312–3328 (2021).

Article 
ADS 

Google Scholar
 

Maddox, N. [O ii] as a proxy for star formation in AGN host galaxies: beware of extended emission line regions. Mon. Not. R. Astron. Soc. 480, 5203–5210 (2018).

ADS 

Google Scholar
 

Veres, P. M. et al. Back from the dead: AT2019aalc as a candidate repeating TDE in an AGN. Preprint at https://arxiv.org/abs/2408.17419 (2024).

Perley, D. A. Fully automated reduction of longslit spectroscopy with the low resolution imaging spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

Article 
ADS 

Google Scholar
 

Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).

Article 
ADS 

Google Scholar
 

Bradley, L. et al. astropy/photutils: 1.13.0 version 1.13.0. Zenodo https://doi.org/10.5281/zenodo.12585239 (2024).

Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

Article 
ADS 

Google Scholar
 

Chen, Y. et al. The KBSS-KCWI survey: the connection between extended Ly α haloes and galaxy azimuthal angle at z ~ 2–3. Mon. Not. R. Astron. Soc. 508, 19–43 (2021).

Article 
ADS 

Google Scholar
 

Soto, K. T., Lilly, S. J., Bacon, R., Richard, J. & Conseil, S. ZAP – enhanced PCA sky subtraction for integral field spectroscopy. Mon. Not. R. Astron. Soc. 458, 3210–3220 (2016).

Article 
ADS 

Google Scholar
 

Jacob, J. C. et al. Montage: an astronomical image mosaicking toolkit. Astrophysics Source Code Library ascl:1010.036 (2010).

Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

Article 
ADS 

Google Scholar
 

Mainzer, A. et al. Initial performance of the NEOWISE reactivation mission. Astrophys. J. 792, 30 (2014).

Article 
ADS 

Google Scholar
 

Pozo Nuñez, F., Gianniotis, N. & Polsterer, K. L. A Gaussian process cross-correlation approach to time-delay estimation in active galactic nuclei. Astron. Astrophys. 674, A83 (2023).

Article 
ADS 

Google Scholar
 

Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014).

Article 
ADS 

Google Scholar
 

Mandal, A. K. et al. Revisiting the dust torus size–luminosity relation based on a uniform reverberation-mapping analysis. Astrophys. J. 968, 59 (2024).

Article 
ADS 

Google Scholar
 

Jiang, N. et al. Infrared echoes of optical tidal disruption events: ~1% dust-covering factor or less at subparsec scale. Astrophys. J. 911, 31 (2021).

Article 
ADS 

Google Scholar
 

Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

Article 
ADS 

Google Scholar
 

Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).

Article 
ADS 

Google Scholar
 

Margutti, R. et al. The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves. Mon. Not. R. Astron. Soc. 428, 729–742 (2013).

Article 
ADS 

Google Scholar
 

HI4PI Collaboration. HI4PI: a full-sky H i survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

Article 

Google Scholar
 

Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

Article 

Google Scholar
 

Andreoni, I. et al. A very luminous jet from the disruption of a star by a massive black hole. Nature 612, 430–434 (2022).

Article 
ADS 

Google Scholar
 

Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).

Article 

Google Scholar
 

Kozłowski, S. Virial black hole mass estimates for 280,000 AGNs from the SDSS broadband photometry and single-epoch spectra. Astrophys. J. Suppl. Ser. 228, 9 (2017).

Article 
ADS 

Google Scholar
 

Cackett, E. M. & Horne, K. Photoionized Hβ emission in NGC 5548: it breathes! Mon. Not. R. Astron. Soc. 365, 1180–1190 (2006).

Article 
ADS 

Google Scholar
 

Wang, S. et al. The Sloan Digital Sky Survey reverberation mapping project: how broad emission line widths change when luminosity changes. Astrophys. J. 903, 51 (2020).

Article 
ADS 

Google Scholar
 

Sheng, Z. et al. Mid-infrared variability of changing-look AGNs. Astrophys. J. Lett. 846, L7 (2017).

Article 
ADS 

Google Scholar
 

MacLeod, C. L. et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 457, 389–404 (2016).

Article 
ADS 

Google Scholar
 

Ricci, C. et al. The destruction and recreation of the X-ray corona in a changing-look active galactic nucleus. Astrophys. J. Lett. 898, L1 (2020).

Article 
ADS 

Google Scholar
 

Tovar Mendoza, G., Davenport, J. R. A., Agol, E., Jackman, J. A. G. & Hawley, S. L. Llamaradas Estelares: modeling the morphology of white-light flares. Astron. J. 164, 17 (2022).

Article 
ADS 

Google Scholar
 

Gryciuk, M. et al. Flare characteristics from X-ray light curves. Sol. Phys. 292, 77 (2017).

Article 
ADS 

Google Scholar