Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).
Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148 (2020).
He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Rezai, M., Wrachtrup, J. & Gerhardt, I. Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018).
Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662 (2018).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Chen, D. et al. Quantum interference of resonance fluorescence from germanium-vacancy color centers in diamond. Nano Lett. 22, 6306–6312 (2022).
Martínez, J. A. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).
Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).
Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).
Ren, P. et al. Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition. Nat. Commun. 13, 3982 (2022).
Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).
Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).
Shkarin, A. et al. Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules. Phys. Rev. Lett. 126, 133602 (2021).
Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).
You, X. et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photon. 4, 066003 (2022).
Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).
Duquennoy, R. et al. Real-time two-photon interference from distinct molecules on the same chip. Optica 9, 731–737 (2022).
Papon, C. et al. Independent operation of two waveguide-integrated quantum emitters. Phys. Rev. Appl. 19, L061003 (2023).
Dusanowski, Ł., Köck, D., Schneider, C. & Höfling, S. On-chip Hong–Ou–Mandel interference from separate quantum dot emitters in an integrated circuit. ACS Photon. 10, 2941–2947 (2023).
Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).
Waltrich, R., Klotz, M., Agafonov, V. N. & Kubanek, A. Two-photon interference from silicon-vacancy centers in remote nanodiamonds. Nanophotonics 12, 3663–3669 (2023).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Nicolet, A. A. et al. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. ChemPhysChem 8, 1929–1936 (2007).
Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).
Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).
Kimble, H. & Mandel, L. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976).
Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).
Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).
Schofield, R. C. et al. Photon indistinguishability measurements under pulsed and continuous excitation. Phys. Rev. Res. 4, 013037 (2022).
Koong, Z. X. et al. Fundamental limits to coherent photon generation with solid-state atomlike transitions. Phys. Rev. Lett. 123, 167402 (2019).
Phillips, C. L. et al. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett. 125, 043603 (2020).
Hanschke, L. et al. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett. 125, 170402 (2020).
Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).
Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).
Lange, C. M. et al. Cavity QED with molecular defects coupled to a photonic crystal cavity. Preprint at https://arxiv.org/abs/2506.01917 (2025).
Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).
Gimeno-Segovia, M., Rudolph, T. & Economou, S. E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019).
Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).
Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Trebbia, J. B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022).
Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023).
Rattenbacher, D. et al. On-chip interference of scattering from two individual molecules. Optica 10, 1595–1601 (2023).
Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. 20, 836–842 (2024).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).
Loudon, R. The Quantum Theory of Light 3rd edn (Oxford Univ. Press, 2000).
Grandi, S. et al. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys. Rev. A 94, 063839 (2016).
Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Process and Applications (Wiley, 1998).
Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 10, 025106 (2020).
Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).
Eberly, J. H. & Wódkiewicz, K. The time-dependent physical spectrum of light. J. Opt. Soc. Am. 67, 1252–1261 (1977).
del Valle, E., Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C. & Hartmann, M. J. Theory of frequency-filtered and time-resolved N-photon correlations. Phys. Rev. Lett. 109, 183601 (2012).