Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

Article 

Google Scholar
 

Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

Article 
CAS 

Google Scholar
 

Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

Article 
CAS 

Google Scholar
 

Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

Article 
CAS 

Google Scholar
 

Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148 (2020).

Article 
CAS 

Google Scholar
 

He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

Article 
CAS 

Google Scholar
 

Rezai, M., Wrachtrup, J. & Gerhardt, I. Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018).

CAS 

Google Scholar
 

Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, D. et al. Quantum interference of resonance fluorescence from germanium-vacancy color centers in diamond. Nano Lett. 22, 6306–6312 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Martínez, J. A. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).

Article 

Google Scholar
 

Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

Article 
PubMed 

Google Scholar
 

Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

Article 

Google Scholar
 

Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

Article 
CAS 

Google Scholar
 

Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

Article 
CAS 

Google Scholar
 

Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ren, P. et al. Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition. Nat. Commun. 13, 3982 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

Article 
CAS 

Google Scholar
 

Shkarin, A. et al. Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules. Phys. Rev. Lett. 126, 133602 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

You, X. et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photon. 4, 066003 (2022).

Article 
CAS 

Google Scholar
 

Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Duquennoy, R. et al. Real-time two-photon interference from distinct molecules on the same chip. Optica 9, 731–737 (2022).

Article 
CAS 

Google Scholar
 

Papon, C. et al. Independent operation of two waveguide-integrated quantum emitters. Phys. Rev. Appl. 19, L061003 (2023).

Article 
CAS 

Google Scholar
 

Dusanowski, Ł., Köck, D., Schneider, C. & Höfling, S. On-chip Hong–Ou–Mandel interference from separate quantum dot emitters in an integrated circuit. ACS Photon. 10, 2941–2947 (2023).

Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Waltrich, R., Klotz, M., Agafonov, V. N. & Kubanek, A. Two-photon interference from silicon-vacancy centers in remote nanodiamonds. Nanophotonics 12, 3663–3669 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

Article 
CAS 
PubMed 

Google Scholar
 

Nicolet, A. A. et al. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. ChemPhysChem 8, 1929–1936 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

Article 

Google Scholar
 

Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

Article 
CAS 

Google Scholar
 

Kimble, H. & Mandel, L. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976).

Article 
CAS 

Google Scholar
 

Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

Article 
PubMed 

Google Scholar
 

Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).

Article 
PubMed 

Google Scholar
 

Schofield, R. C. et al. Photon indistinguishability measurements under pulsed and continuous excitation. Phys. Rev. Res. 4, 013037 (2022).

Article 
CAS 

Google Scholar
 

Koong, Z. X. et al. Fundamental limits to coherent photon generation with solid-state atomlike transitions. Phys. Rev. Lett. 123, 167402 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Phillips, C. L. et al. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett. 125, 043603 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Hanschke, L. et al. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett. 125, 170402 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

Article 
CAS 

Google Scholar
 

Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Lange, C. M. et al. Cavity QED with molecular defects coupled to a photonic crystal cavity. Preprint at https://arxiv.org/abs/2506.01917 (2025).

Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Gimeno-Segovia, M., Rudolph, T. & Economou, S. E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

CAS 

Google Scholar
 

Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

Article 
CAS 

Google Scholar
 

Trebbia, J. B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023).

CAS 

Google Scholar
 

Rattenbacher, D. et al. On-chip interference of scattering from two individual molecules. Optica 10, 1595–1601 (2023).

Article 
CAS 

Google Scholar
 

Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. 20, 836–842 (2024).

Article 
CAS 

Google Scholar
 

Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

Article 

Google Scholar
 

Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).

Article 
CAS 

Google Scholar
 

Loudon, R. The Quantum Theory of Light 3rd edn (Oxford Univ. Press, 2000).

Grandi, S. et al. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys. Rev. A 94, 063839 (2016).

Article 

Google Scholar
 

Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Process and Applications (Wiley, 1998).

Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 10, 025106 (2020).

Article 

Google Scholar
 

Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

Article 

Google Scholar
 

Eberly, J. H. & Wódkiewicz, K. The time-dependent physical spectrum of light. J. Opt. Soc. Am. 67, 1252–1261 (1977).

Article 

Google Scholar
 

del Valle, E., Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C. & Hartmann, M. J. Theory of frequency-filtered and time-resolved N-photon correlations. Phys. Rev. Lett. 109, 183601 (2012).

Article 
PubMed 

Google Scholar