Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).
Hudson, R. J. et al. A framework for multiexcitonic logic. Nat. Rev. Chem. 8, 1–16 (2024).
Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).
Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).
Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).
Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).
Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).
Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).
Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).
Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).
Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).
LaMountain, T. et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).
Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).
Emmanuele, R. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).
Banerjee, R. & Liew, T. C. H. Artificial life in an exciton-polariton lattice. New J. Phys. 22, 103062 (2020).
Król, M. et al. Giant spin Meissner effect in a nonequilibrium exciton-polariton gas. Phys. Rev. B 99, 115318 (2019).
Sigurdsson, H. et al. Persistent self-induced Larmor precession evidenced through periodic revivals of coherence. Phys. Rev. Lett. 129, 155301 (2022).
Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).
Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).
Liu, T. Y. et al. Dynamics of spin-dependent polariton–polariton interactions in two-dimensional layered halide organic perovskite microcavities. Laser Photon. Rev. 16, 2200176 (2022).
Fieramosca, A. et al. Origin of exciton–polariton interactions and decoupled dark states dynamics in 2D hybrid perovskite quantum wells. Nano Lett. 24, 8240 (2024).
Zhao, J. et al. Room temperature polariton spin switches based on van der Waals superlattices. Nat. Commun. 15, 7601 (2024).
Zhao, J. et al. Exciton polariton interactions in van der Waals superlattices at room temperature. Nat. Commun. 14, 1512 (2023).
Hu, Z. et al. Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nat. Commun. 15, 1747 (2024).
Shelykh, I. A., Kavokin, A. V., Rubo, Y. G., Liew, T. & Malpuech, G. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2009).
Vladimirova, M. et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities. Phys. Rev. B 79, 115325 (2009).
Vladimirova, M. et al. Polariton-polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).
Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 10, 500–504 (2014).
Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).
Fernandez, H. A., Withers, F., Russo, S. & Barnes, W. L. Electrically tuneable exciton-polaritons through free electron doping in monolayer WS2 microcavities. Adv. Opt. Mater. 7, 1900484 (2019).
Tan, L. B. et al. Bose polaron interactions in a cavity-coupled monolayer semiconductor. Phys. Rev. X 13, 031036 (2023).
Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).
Choo, K., Bleu, O., Levinsen, J. & Parish, M. M. Polaronic polariton quasiparticles in a dark excitonic medium. Phys. Rev. B 109, 195432 (2024).
Sercombe, D. et al. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).
Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).
Bastarrachea-Magnani, M. A., Camacho-Guardian, A. & Bruun, G. M. Attractive and repulsive exciton-polariton interactions mediated by an electron gas. Phys. Rev. Lett. 126, 127405 (2021).
Zhumagulov, Y. V. et al. Microscopic theory of exciton and trion polaritons in doped monolayers of transition metal dichalcogenides. npj Comput. Mater. 8, 92 (2022).
Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).
Masharin, M. A. et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photon. 10, 691–698 (2023).
Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).
Yu, S. et al. Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems. J. Appl. Phys. 82, 3363–3367 (1997).
Liu, X. et al. Nonlinear valley phonon scattering under the strong coupling regime. Nat. Mater. 20, 1210–1215 (2021).
Mori, N. & Ando, T. Electron–optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175–6188 (1989).
Miller, B. et al. Tuning the Fröhlich exciton–phonon scattering in monolayer MoS2. Nat. Commun. 10, 807 (2019).
Sie, E. J. et al. Observation of exciton redshift–blueshift crossover in monolayer WS2. Nano. Lett. 17, 4210–4216 (2017).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Gunde, M. K. Vibrational modes in amorphous silicon dioxide. Phys. B 292, 286–295 (2000).
Zhao, W. et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677–9683 (2013).
Zhao, J. et al. Room temperature spin-layer locking of exciton-polariton nonlinearities. figshare https://doi.org/10.6084/m9.figshare.29974651 (2025).