Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).

Article 

Google Scholar
 

Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

Article 
PubMed 

Google Scholar
 

Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

Article 

Google Scholar
 

Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

Article 
PubMed 

Google Scholar
 

Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).

Article 
PubMed 

Google Scholar
 

Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

Article 
PubMed 

Google Scholar
 

Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

Article 

Google Scholar
 

Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R Soc. B: Biol. Sci. 280, 20122829 (2013).

Article 

Google Scholar
 

Wernberg, T. et al. Marine heatwaves as hot spots of climate change and impacts on biodiversity and ecosystem services. Nat. Rev. Biodivers. 1–19 (2025).

Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 4216 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).

Article 

Google Scholar
 

Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).

Article 
CAS 

Google Scholar
 

Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

Article 
CAS 

Google Scholar
 

Smith, K. E. et al. Baseline matters: Challenges and implications of different marine heatwave baselines. Prog. Oceanogr. 231, 103404 (2025).

Article 

Google Scholar
 

Smith, K. E. et al. Ocean extremes as a stress test for marine ecosystems and society. Nat. Climate Change 15, 1–5 (2025).

Article 

Google Scholar
 

Wernberg, T. et al. Impacts of climate change on marine foundation species. Ann. Rev. Mar. Sci. 16, 247–282 (2024).

Article 
PubMed 

Google Scholar
 

Ellison, A. Foundation species, non-trophic interactions, and the value of being common. Science 13, 254–268 (2019).


Google Scholar
 

Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

Article 
PubMed 

Google Scholar
 

Cheng, L. et al. Past and future ocean warming. Nat Rev Earth Environ 3, 776–794 (2022).

Article 

Google Scholar
 

Smith, K. E. et al. Global impacts of marine heatwaves on coastal foundation species. Nat. Commun. 15, 5052 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bateman, B. L., VanDerWal, J. & Johnson, C. N. Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35, 306–314 (2012).

Article 

Google Scholar
 

Klaassen, M., Marques, T. A., Alves, F. & Fernandez, M. Trends in marine species distribution models: a review of methodological advances and future challenges. Ecography, e07702 (2025).

Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).

Article 

Google Scholar
 

Franco, J. N. et al. The ‘golden kelp’Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. J. Ecol. 106, 47–58 (2018).

Article 

Google Scholar
 

Marbà, N., Jordà, G., Bennett, S. & Duarte, C. M. Seagrass thermal limits and vulnerability to future warming. Front. Mar. Sci. 9, 860826 (2022).

Article 

Google Scholar
 

Christie, H., Jørgensen, N. M., Norderhaug, K. M. & Waage-Nielsen, E. Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J. Mar. Biol. Assoc. U.K. 83, 687–699 (2003).

Article 

Google Scholar
 

Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).

Article 

Google Scholar
 

Unsworth, R. & Cullen-Unsworth, L. C. Biodiversity, ecosystem services, and the conservation of seagrass meadows. Coast. Conserv 19, 95 (2014).

Article 

Google Scholar
 

Wernberg, T., Kendrick, G. A. & Toohey, B. D. Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat. Ecol. 39, 419–430 (2005).

Article 

Google Scholar
 

Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52, 1216–1226 (2015).

Article 

Google Scholar
 

Smale, D. A., King, N. G., Jackson-Bué, M. & Moore, P. J. Quantifying use of kelp forest habitat by commercially important crustaceans in the United Kingdom. J. Mar. Biol. Assoc. U.K. 102, 627–634 (2022).

Article 

Google Scholar
 

Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).

Article 

Google Scholar
 

Pessarrodona, A., Moore, P. J., Sayer, M. D. & Smale, D. A. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob. Change Biol. 24, 4386–4398 (2018).

Article 

Google Scholar
 

Smale, D. A. & King, N. G. Vol. 244 1675–1677 (Wiley Online Library, 2024).

Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).

Article 
PubMed 

Google Scholar
 

Smith, K. E. et al. Biological impacts of marine heatwaves. Ann. Rev. Mar. Sci. 15, 119–145 (2023).

Article 
PubMed 

Google Scholar
 

Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, eabj3593 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Beas-Luna, R. et al. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. Glob. Change Biol. 26, 6457–6473 (2020).

Article 

Google Scholar
 

Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26, 3525–3538 (2020).

Article 

Google Scholar
 

Hensel, M. J. et al. Rise of Ruppia in Chesapeake Bay: Climate change–driven turnover of foundation species creates new threats and management opportunities. Proc. Natl. Acad. Sci. 120, e2220678120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Harley, C. D. et al. Effects of climate change on global seaweed communities. J. Phycol. 48, 1064–1078 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Bennett, S. et al. Thermal performance of seaweeds and seagrasses across a regional climate gradient. Front. Mar. Sci. 9, 733315 (2022).

Article 

Google Scholar
 

Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135 (2017).

Article 

Google Scholar
 

Maxwell, S. L. et al. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 25, 613–625 (2019).

Article 

Google Scholar
 

Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

Article 

Google Scholar
 

Webb, T. J., Lines, A. & Howarth, L. M. Occupancy-derived thermal affinities reflect known physiological thermal limits of marine species. Ecol. Evol. 10, 7050–7061 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).

Article 

Google Scholar
 

Sorte, C. J., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 400, 209–217 (2011).

Article 

Google Scholar
 

Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: Using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).

Article 

Google Scholar
 

Chatzimentor, A., Doxa, A., Katsanevakis, S. & Mazaris, A. D. Are Mediterranean marine threatened species at high risk by climate change?. Glob. Change Biol. 29, 1809–1821 (2023).

Article 
CAS 

Google Scholar
 

Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 31, 1422–1439 (2022).

Article 

Google Scholar
 

McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).

Article 

Google Scholar
 

Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).

Article 
CAS 

Google Scholar
 

Bolton, J. J. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64, 263–279 (2010).

Article 

Google Scholar
 

Larkum, A. W., Waycott, M. & Conran, J. G. Evolution and biogeography of seagrasses. 3–29 (2018).

Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).

Article 

Google Scholar
 

Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 31, 636–648 (2022).

Article 

Google Scholar
 

Thomsen, M. S., Stæhr, P. A. & South, P. M. Fabulous but forgotten fucoid forests. Ecol. Evol. 14, e70491 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, K. D. T. et al. Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS ONE 6, e29340 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Madeira, D., Narciso, L., Cabral, H. N. & Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 70, 32–41 (2012).

Article 

Google Scholar
 

Smith, K. E., Moore, P. J., King, N. G. & Smale, D. A. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnol. Oceanogr. 67, 314–328 (2022).

Article 

Google Scholar
 

Harris, O., King, N. G., Foggo, A. & Smale, D. A. Intraspecific facilitation in an intertidal foundation species plays fundamental role in promoting resistance to extreme climatic events. Oikos, e11079 (2025).

Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Graiff, A., Liesner, D., Karsten, U. & Bartsch, I. Temperature tolerance of western Baltic Sea Fucus vesiculosus–growth, photosynthesis and survival. J. Exp. Mar. Biol. Ecol. 471, 8–16 (2015).

Article 

Google Scholar
 

Eggert, A. & Wiencke, C. Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol. 23, 609–618 (2000).

Article 

Google Scholar
 

Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).

Article 

Google Scholar
 

Davison, I. R. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27, 2–8 (1991).

Article 

Google Scholar
 

Bulthuis, D. A. Effects of temperature on photosynthesis and growth of seagrasses. Aquat. Bot. 27, 27–40 (1987).

Article 

Google Scholar
 

Saha, M. et al. Response of foundation macrophytes to near-natural simulated marine heatwaves. Glob. Change Biol. 26, 417–430 (2020).

Article 

Google Scholar
 

Eggert, A. Seaweed responses to temperature. Seaweed biology: Novel insights into ecophysiology, ecology and utilization, 47–66 (2012).

Harada, A. E. & Burton, R. S. Ecologically relevant temperature ramping rates enhance the protective heat shock response in an intertidal ectotherm. Physiol. Biochem. Zool. 92, 152–162 (2019).

Article 
PubMed 

Google Scholar
 

Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).

Article 
PubMed 

Google Scholar
 

Leathers, T., King, N. G., Foggo, A. & Smale, D. A. Marine heatwave duration and intensity interact to reduce physiological tipping points of kelp species with contrasting thermal affinities. Ann. Bot. 133, 51–60 (2024).

Article 
PubMed 

Google Scholar
 

Moyano, M. et al. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS ONE 12, e0179928 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Madeira, C., Mendonça, V., Flores, A. A., Diniz, M. S. & Vinagre, C. High thermal tolerance does not protect from chronic warming–A multiple end-point approach using a tropical gastropod. Stramonita haemastoma. Ecological Indicators 91, 626–635 (2018).

Article 

Google Scholar
 

Smith, K. E., Thatje, S. & Hauton, C. Thermal tolerance during early ontogeny in the common whelk Buccinum undatum (Linnaeus 1785): bioenergetics, nurse egg partitioning and developmental success. J. Sea Res. 79, 32–39 (2013).

Article 

Google Scholar
 

Veenhof, R. J. et al. In Oceanography and marine biology (CRC Press, Boca Raton, 2022).


Google Scholar
 

Veenhof, R. et al. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. Ann. Bot. 133, 153–168 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Becheler, R. et al. Variation in thermal tolerance of the giant kelp’s gametophytes: suitability of habitat, population quality or local adaptation?. Front. Mar. Sci. 9, 802535 (2022).

Article 

Google Scholar
 

Truebano, M., Fenner, P., Tills, O., Rundle, S. D. & Rezende, E. L. Thermal strategies vary with life history stage. J. Experim. Biol. 221, jeb171629 (2018).

Article 

Google Scholar
 

Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecol. Evolut. 1, 1846–1852 (2017).

Article 

Google Scholar
 

King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41, 1469–1484 (2018).

Article 

Google Scholar
 

King, N. G. et al. Evidence for different thermal ecotypes in range centre and trailing edge kelp populations. J. Exp. Mar. Biol. Ecol. 514, 10–17 (2019).

Article 

Google Scholar
 

Liesner, D. et al. Heat stress responses and population genetics of the kelp Laminaria digitata (Phaeophyceae) across latitudes reveal differentiation among North Atlantic populations. Ecol. Evol. 10, 9144–9177 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ladah, L. B. & Zertuche-González, J. A. Local adaptation of juvenile giant kelp, Macrocystis pyrifera, from their southern limit in the northern hemisphere explored using reciprocal transplantation. Eur. J. Phycol. 57, 357–366 (2022).

Article 
CAS 

Google Scholar
 

Strasser, F.-E. et al. Population level variation in reproductive development and output in the golden kelp Laminaria ochroleuca under marine heat wave scenarios. Front. Mar. Sci. 9, 943511 (2022).

Article 

Google Scholar
 

Desforges, J. E. et al. The ecological relevance of critical thermal maxima methodology for fishes. J. Fish Biol. 102, 1000–1016 (2023).

Article 
PubMed 

Google Scholar
 

Bartsch, I., Vogt, J., Pehlke, C. & Hanelt, D. Prevailing sea surface temperatures inhibit summer reproduction of the kelp L aminaria digitata at H elgoland (N orth S ea). J. Phycol. 49, 1061–1073 (2013).

Article 
PubMed 

Google Scholar
 

Qin, L.-Z. et al. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Ind. 119, 106821 (2020).

Article 

Google Scholar
 

Bass, A. V., Smith, K. E. & Smale, D. A. Marine heatwaves and decreased light availability interact to erode the ecophysiological performance of habitat-forming kelp species. J. Phycol. 59, 481–495 (2023).

Article 
PubMed 

Google Scholar
 

Collier, C. J., Uthicke, S. & Waycott, M. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnol. Oceanogr. 56, 2200–2210 (2011).

Article 
CAS 

Google Scholar
 

Fernández, P. A. et al. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress. Sci. Rep. 10, 3186 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gauci, C., Jueterbock, A., Khatei, A., Hoarau, G. & Bartsch, I. Thermal priming of Saccharina latissima: a promising strategy to improve seaweed production and restoration in future climates. Mar. Ecol. Prog. Ser. 745, 59–71 (2024).

Article 

Google Scholar
 

King, N. G., Leathers, T., Smith, K. E. & Smale, D. A. The influence of pre-exposure to marine heatwaves on the critical thermal maxima (CTmax) of marine foundation species. Funct. Ecol. 39(8), 1869–1878 (2024).

Article 

Google Scholar
 

Hereward, H. F., King, N. G. & Smale, D. A. Intra-annual variability in responses of a canopy forming kelp to cumulative low tide heat stress: Implications for populations at the trailing range edge. J. Phycol. 56, 146–158 (2020).

Article 
PubMed 

Google Scholar
 

Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B: Biol. Sci. 281, 20140846 (2014).

Article 

Google Scholar
 

Kordas, R. L., Harley, C. D. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).

Article 

Google Scholar