Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci. 2023;14:1246093. https://doi.org/10.3389/fpls.2023.1246093.


Google Scholar
 

Pearce RS. Plant freezing and damage. Ann Bot. 2001;87:417–24. https://doi.org/10.1006/anbo.2000.1352.


Google Scholar
 

Zhang YY, Wang L. Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview. Hortic Res. 2025;12:uhaf081. https://doi.org/10.1093/hr/uhaf081.


Google Scholar
 

Xu QC, Liang HB, Wei ZW, Zhang YG, Lu XJ, Li F, et al. Assessing climate change impacts on crop yields and exploring adaptation strategies in Northeast China. Earths Future. 2024;12:e2023EF004063. https://doi.org/10.1029/2023EF004063.


Google Scholar
 

Zhu L, Li ZY, Zhang XQ, Yin GM, Liu SQ, Zhao JM, et al. Unveiling the cold acclimation of alfalfa: insights into its starch-soluble sugar dynamic transformation. Plants. 2025;14:1313. https://doi.org/10.3390/plants14091313.


Google Scholar
 

Song YG, Lv J, Ma ZQ, Dong W. The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress. Plant Growth Regul. 2019;89:239–49. https://doi.org/10.1007/s10725-019-00530-1.


Google Scholar
 

Wang X, Kang WJ, Wu F, Miao JM, Shi SL. Comparative transcriptome analysis reveals new insight of alfalfa (Medicago sativa L.) cultivars in response to abrupt freezing stress. Front Plant Sci. 2022;13:798118. https://doi.org/10.3389/fpls.2022.798118.


Google Scholar
 

Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, et al. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol. 2020;40:750–76. https://doi.org/10.1080/07388551.2020.1768509.


Google Scholar
 

Ma ZM, Hu LJ, Jiang WZ. Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants: A comprehensive review. Int J Mol Sci. 2024;25:893. https://doi.org/10.3390/ijms25020893.


Google Scholar
 

Yang ZF, Jin HM, Chen JH, Li CY, Wang JN, Luo J, et al. Identification and analysis of the AP2 subfamily transcription factors in the Pecan (Carya illinoinensis). Int J Mol Sci. 2021;22:13568. https://doi.org/10.3390/ijms222413568.


Google Scholar
 

Guan YL, Liu SQ, Wu WH, Hong KY, Li RX, Zhu LM, et al. Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in liriodendron Chinense. J Res. 2021;32:2531–43. https://doi.org/10.1007/s11676-020-01275-8.


Google Scholar
 

Navarrete-Campos D, Le Feuvre R, Balocchi C, Valenzuela S. Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on Transgenic Arabidopsis Thaliana. Trees. 2017;31:1041–55. https://doi.org/10.1007/s00468-017-1529-3.


Google Scholar
 

Li XG, Liang XQ, Li WH, Yao AQ, Liu WD, Wang Y, et al. Isolation and functional analysis of MbCBF2, a Malus baccata (L.) Borkh CBF transcription factor gene, with functions in tolerance to cold and salt stress in Transgenic Arabidopsis Thaliana. Int J Mol Sci. 2022;23:9827. https://doi.org/10.3390/ijms23179827.


Google Scholar
 

Pennycooke JC, Cheng H, Stockinger EJ. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008;146:1242–54. https://doi.org/10.1104/pp.107.108779.


Google Scholar
 

Shu YJ, Li W, Zhao JY, Zhang SJ, Xu HY, Liu Y, et al. Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genet Mol Biol. 2017;40:824–33. https://doi.org/10.1590/1678-4685-GMB-2017-0053.


Google Scholar
 

Liang XQ, Luo GJ, Li WH, Yao AQ, Liu WD, Xie LP, et al. Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, increases cold and salinity tolerance in Arabidopsis Thaliana. Plant Physiol Biochem. 2022;192:230–42. https://doi.org/10.1016/j.plaphy.2022.10.012.


Google Scholar
 

Li DF, Zhang YQ, Hu XN, Shen XY, Ma L, Su Z, et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol. 2011;11:109. https://doi.org/10.1186/1471-2229-11-109.


Google Scholar
 

Xu L, Feng GY, Yang ZF, Xu XH, Huang LK, Yang QC, et al. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in Orchardgrass (Dactylis glomerata). Mol Biol Rep. 2020;47:5225–41. https://doi.org/10.1007/s11033-020-05598-x.


Google Scholar
 

Chen HL, Hu LL, Wang LX, Wang SH, Cheng XZ. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L). J Appl Genet. 2022;63:223–36. https://doi.org/10.1007/s13353-021-00675-8.


Google Scholar
 

Chen K, Tang WS, Zhou YB, Chen J, Xu ZS, Ma R, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in Transgenic soybean by interacting with GmERFs. Plant Physiol Biochem. 2022;170:287–95. https://doi.org/10.1016/j.plaphy.2021.12.014.


Google Scholar
 

Feng DL, He SL, Chung JP. Isolation of the AP2/ERF transcription factor CaERF14 in pepper and functional characterization under salinity and dehydration stress. Sci Rep. 2025;15:19726. https://doi.org/10.1038/s41598-025-03808-9.


Google Scholar
 

Fei Y, Yao CC, Hu JW, Lu N, Li PL, Liu BY, et al. CbuERF114, an ethylene responsive factor, regulates floral transition in Catalpa Bungei. Plant Physiol Biochem. 2025;227:110176. https://doi.org/10.1016/j.plaphy.2025.110176.


Google Scholar
 

Hu ZY, Wang XJ, Wei L, Wansee S, Rabbani Nasab H, Chen L, et al. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against Stripe rust. J Plant Physiol. 2023;288:154078. https://doi.org/10.1016/j.jplph.2023.154078.


Google Scholar
 

Wang XQ, Du YH, Li FB, Fang LP, Pang TT, Wu WJ, et al. Unique feature of Fe-OM complexes for limiting cd accumulation in grains by target-regulating gene expression in rice tissues. J Hazard Mater. 2022;424:127361. https://doi.org/10.1016/j.jhazmat.2021.127361.


Google Scholar
 

Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. Plant Physiol. 2024;195:170–89. https://doi.org/10.1093/plphys/kiae105.


Google Scholar
 

Peng T, Guo C, Yang J, Xu M, Zuo J, Bao MZ, et al. Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tissue Organ Cult. 2016;126:373–85. https://doi.org/10.1007/s11240-016-1004-7.


Google Scholar
 

Song QP, Wang XP, Li J, Chen TH, Liu Y, Yang XH. CBF1 and CBF4 in Solanum tuberosum L. differ in their effect on low-temperature tolerance and development. Environ Exp Bot. 2021;185:104416. https://doi.org/10.1016/j.envexpbot.2021.104416.


Google Scholar
 

Wang LH, Gao JH, Qin XB, Shi XD, Luo L, Zhang GZ, et al. JcCBF2 gene from Jatropha Curcas improves freezing tolerance of Arabidopsis Thaliana during the early stage of stress. Mol Biol Rep. 2015;42:937–45. https://doi.org/10.1007/s11033-014-3831-0.


Google Scholar
 

Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, et al. Reactive oxygen species in plants: from source to sink. Antioxidants. 2022;11:225. https://doi.org/10.3390/antiox11020225.


Google Scholar
 

Hasegawa MP, Bressan AR, Zhu JK, Bohnert JH. Plant cellular and molecular responses to high salinity. Plant Biol. 2000;51:463–99. https://doi.org/10.1146/annurev.arplant.51.1.463.


Google Scholar
 

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021;11:552969. https://doi.org/10.3389/fpls.2020.552969.


Google Scholar
 

Xiang T, Bao GZ, Pan XY, Chen WW, Hu JK, Li GM. Physiological effects of Solanum rostratum Dunal extract and cadmium chloride complex stress on Rye seedlings under freeze-thaw conditions. BMC Plant Biol. 2025;25:956. https://doi.org/10.1186/s12870-025-07001-y.


Google Scholar
 

Sun MX, Liu XL, Gao HF, Zhang BB, Peng FT, Xiao YS. Phosphatidylcholine enhances homeostasis in Peach seedling cell membrane and increases its salt stress tolerance by phosphatidic acid. Int J Mol Sci. 2022;23:2585. https://doi.org/10.3390/ijms23052585.


Google Scholar
 

Li BB, Wang XH, Wang XF, Xi ZM. An AP2/ERF transcription factor VvERF63 positively regulates cold tolerance in Arabidopsis and grape leaves. Environ Exp Bot. 2023;205:105124. https://doi.org/10.1016/j.envexpbot.2022.105124.


Google Scholar
 

Yu WQ, Sheng JP, Zhao RR, Wang Q, Ma PH, Shen L. Ethylene biosynthesis is involved in regulating chilling tolerance and SlCBF1 gene expression in tomato fruit. Postharvest Biol Technol. 2019;149:139–47. https://doi.org/10.1016/j.postharvbio.2018.11.012.


Google Scholar
 

Wang PJ, Chen XJ, Guo YC, Zheng YC, Yue C, Yang JF, et al. Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under low temperature. Int J Mol Sci. 2019;20:5137. https://doi.org/10.3390/ijms20205137.


Google Scholar
 

Hwarari D, Guan YL, Ahmad B, Movahedi A, Min T, Hao ZD, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. Int J Mol Sci. 2022;23:1549. https://doi.org/10.3390/ijms23031549.


Google Scholar
 

Raza A, Su W, Jia ZQ, Luo D, Zhang Y, Gao A, et al. Mechanistic insights into trehalose-mediated cold stress tolerance in rapeseed (Brassica Napus L.) seedlings. Front Plant Sci. 2022;13:857980. https://doi.org/10.3389/fpls.2022.857980.


Google Scholar
 

Xie HJ, Sun YL, Cheng B, Xue SM, Cheng D, Liu LL, et al. Variation in ICE1 methylation primarily determines phenotypic variation in freezing tolerance in Arabidopsis Thaliana. Plant Cell Physiol. 2019;60:152–65. https://doi.org/10.1093/pcp/pcy197.


Google Scholar
 

Shi WT, Ye SX, Xin YT, Jin HM, Hu M, Zheng YP, et al. NAC transcription factor GmNAC035 exerts a positive regulatory role in enhancing salt stress tolerance in plants. Plants. 2025;14:1391. https://doi.org/10.3390/plants14091391.


Google Scholar
 

Kaura V, Malhotra PK, Mittal A, Sanghera GS, Kaur N, Bhardwaj RD, et al. Physiological, biochemical, and gene expression responses of sugarcane under cold, drought and salt stresses. J Plant Growth Regul. 2023;42:6367–76. https://doi.org/10.1007/s00344-022-10850-8.


Google Scholar
 

Zhang BQ, Song XP, Zhang XQ, Huang YX, Liang YJ, Zhou S, et al. Differential gene expression analysis of SoCBL family calcineurin B-like proteins: potential involvement in sugarcane cold stress. Genes. 2022;13(2):246. https://doi.org/10.3390/genes13020246.


Google Scholar
 

Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014;217:109–19. https://doi.org/10.1016/j.plantsci.2013.12.007.


Google Scholar
 

Hu CY, Wang MQ, Zhu CG, Wu SF, Li JJ, Yu JQ, et al. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. Plant Cell Environ. 2024;47:1334–47. https://doi.org/10.1111/pce.14816.


Google Scholar
 

Romero I, Vazquez-Hernandez M, Escribano MI, Merodio C, Sanchez-Ballesta MT. Expression profiles and DNA-binding affinity of five ERF genes in bunches of Vitis vinifera cv. Cardinal treated with high levels of CO2 at low temperature. Front Plant Sci. 2016;7:1748. https://doi.org/10.3389/fpls.2016.01748.


Google Scholar
 

Li PT, Chai Z, Lin PP, Huang CH, Huang GQ, Xu LN, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L). BMC Genomics. 2020;21:685. https://doi.org/10.1186/s12864-020-07076-x.


Google Scholar
 

Zhai TK, Lan SX, Xv LZ, Zhang XY, Ma XW, Li ZY, et al. Genome-Wide identification and expression analysis reveal bZIP transcription factors mediated hormones that functions during early somatic embryogenesis in Dimocarpus Longan. Plants. 2024;13:662. https://doi.org/10.3390/plants13050662.


Google Scholar
 

Dutta TK, Vashisth N, Ray S, Phani V, Chinnusamy V, Sirohi A. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC Plant Biol. 2023;11:390. https://doi.org/10.1186/s12870-023-04401-w.


Google Scholar
 

Tu MX, Wang XH, Feng TY, Sun XM, Wang YQ, Huang L, et al. Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis Thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Sci. 2016;252:311–23. https://doi.org/10.1016/j.plantsci.2016.08.011.


Google Scholar
 

Huang YJ, Li JM, Nong CC, Lin T, Fang L, Feng X, et al. Piriformospora indica enhances resistance to fusarium wilt in strawberry by increasing the activity of superoxide dismutase, peroxidase, and catalase, while reducing the content of malondialdehyde in the roots. Horticulturae. 2024;10:240. https://doi.org/10.3390/horticulturae10030240.


Google Scholar
 

Hajizadeh HS, Mortazavi SN, Tohidi F, Helvaci HY, Alas TU, Okatan VO. Effect of mutation induced by gamma-irradiation in ornamental plant lilium (Lilium longiflorum Cv. Tresor). Pak J Bot. 2022;54:223–30. https://doi.org/10.30848/PJB2022-1(23).


Google Scholar
 

Xun HW, Zhang X, Yu JM, Pang JS, Wang SC, Liu B, et al. Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean. Transgenic Res. 2021;30:799–810. https://doi.org/10.1007/s11248-021-00266-7.


Google Scholar
 

Jeena GS, Kumar S, Shukla RK. Characterization of MYB35 regulated Methyl jasmonate and wound responsive geraniol 10-hydroxylase-1 gene from Bacopa monnieri. Planta. 2021;253:89. https://doi.org/10.1007/s00425-021-03614-3.


Google Scholar
 

Fan ML, Jiang H, Wu S, Song ZX, Zhang Y, Li XL, et al. A high-efficiency transient expression system reveals that CjMYB5 positively regulates anthocyanin biosynthesis in Camellia Japonica. Horticulturae. 2025;11:839. https://doi.org/10.3390/horticulturae11070839.


Google Scholar
 

Li BB, Fu YS, Li XX, Yin HN, Xi ZM. Brassinosteroids alleviate cadmium phytotoxicity by minimizing oxidative stress in grape seedlings: toward regulating the ascorbate-glutathione cycle. Sci Hortic. 2022;299:111002. https://doi.org/10.1016/j.scienta.2022.111002.


Google Scholar
 

Livak JK, Schmittgen DT. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.


Google Scholar