Duncanson, L. et al. Aboveground biomass density models for NASA’s global ecosystem dynamics investigation (GEDI) lidar mission. Remote. Sens. Environ. 270, 112845 (2022). This paper describes the use of the space-based lidar system GEDI to characterize biomass dynamics globally.

Article 

Google Scholar
 

Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020). This paper demonstrates the ability of lidar data to characterize dynamic ice-sheet mass balance and provide insight into global change processes linked to anthropogenic climate change.

Article 
ADS 

Google Scholar
 

Winiwarter, L., Anders, K., Czerwonka-Schröder, D. & Höfle, B. Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering. Earth Surf. Dynam. 11, 593–613 (2023).

Article 
ADS 

Google Scholar
 

Mandlburger, G., Hauer, C., Wieser, M. & Pfeifer, N. Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—a case study at the Pielach river. Remote. Sens. 7, 6160–6195 (2015).

Article 
ADS 

Google Scholar
 

Hamraz, H., Contreras, M. A. & Zhang, J. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds. Sci. Rep. 7, 6770 (2017).

Article 
ADS 

Google Scholar
 

Wagner, N., Franke, G., Schmieder, K. & Mandlburger, G. Automatic classification of submerged macrophytes at Lake Constance using laser bathymetry point clouds. Remote. Sens. 16, 2257 (2024).

Article 
ADS 

Google Scholar
 

Chase, A. F. et al. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeo. Sci. 38, 387–398 (2011).

Article 

Google Scholar
 

Eitel, J. U. H. et al. Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences. Remote. Sens. Environ. 186, 372–392 (2016). This review provides an overview of ecological lidar applications facilitated by integrating multi-temporal lidar scans and return intensity information.

Article 
ADS 

Google Scholar
 

Baltsavias, E. P. Airborne laser scanning: basic relations and formulas. ISPRS J. Photogramm. Remote. Sens. 54, 199–214 (1999).

Article 
ADS 

Google Scholar
 

Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J. Photogramm. Remote. Sens. 65, 505–513 (2010).

Article 
ADS 

Google Scholar
 

Wehr, A. & Lohr, U. Airborne laser scanning—an introduction and overview. ISPRS J. Photogramm. Remote. Sens. 54, 68–82 (1999).

Article 
ADS 

Google Scholar
 

Wang, Q., Tan, Y. & Mei, Z. Computational methods of acquisition and processing of 3D point cloud data for construction applications. Arch. Computat Methods Eng. 27, 479–499 (2020).

Article 

Google Scholar
 

Pfeifer, N. & Briese, C. Geometrical aspects of airborne laser scanning and terrestrial laser scanning. In ISPRS Workshop on Laser Scanning Vol. XXXVI (eds Rönnholm P. et al.) 311–319 (ISPRS, 2007).

Fiocco, G. & Smullin, L. D. Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar. Nature 199, 1275–1276 (1963).

Article 
ADS 

Google Scholar
 

Rempel, R. C. & Parker, A. K. An information note on an airborne laser terrain profiler for micro-relief studies. In Proc. 3rd Symp. Remote Sensing of Environment 321–337 (University of Michigan Institute of Science and Technology, 1964).

Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

Article 
ADS 

Google Scholar
 

Nelson, R. How did we get here? An early history of forestry lidar. Can. J. Remote. Sens. 39, S6–S17 (2013).

Article 
ADS 

Google Scholar
 

Lefsky, M. A., Cohen, W. B., Parker, G. G. & Harding, D. J. Lidar remote sensing for ecosystem studies. BioScience 52, 19 (2002).

Article 

Google Scholar
 

Markus, T. et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote. Sens. Environ. 190, 260–273 (2017). This paper outlines the design and implementation of ICESat-2.

Article 
ADS 

Google Scholar
 

Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the earth’s forests and topography. Sci. Remote. Sens. 1, 100002 (2020).

Article 

Google Scholar
 

Li, J. et al. 3D forest mapping using a low-cost UAV laser scanning system: investigation and comparison. Remote. Sens. 11, 717 (2019).

Article 
ADS 

Google Scholar
 

Wallace, L., Lucieer, A. & Watson, C. S. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans. Geosci. Remote. Sens. 52, 7619–7628 (2014).

Article 
ADS 

Google Scholar
 

Brown, R., Hartzell, P. & Glennie, C. Evaluation of SPL100 single photon lidar data. Remote. Sens. 12, 722 (2020).

Article 
ADS 

Google Scholar
 

Mandlburger, G., Lehner, H. & Pfeifer, N. A comparison of single photon and full waveform lidar. In ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. Vol. IV-2/W5 (eds Vosselman G. et al.) 397–404 (ISPRS, 2019).

Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote. Sens. Environ. 80, 88–99 (2002). This paper outlines the concept of using area-based lidar summary metrics to predict forest attributes.

Article 
ADS 

Google Scholar
 

Butler, H., Chambers, B., Hartzell, P. & Glennie, C. PDAL: an open source library for the processing and analysis of point clouds. Computers Geosci. 148, 104680 (2021).

Article 

Google Scholar
 

Roussel, J.-R. et al. lidR: an R package for analysis of airborne laser scanning (ALS) data. Remote. Sens. Environ. 251, 112061 (2020). This paper outlines an open-source software package that was originally developed for processing lidar point cloud data into output datasets for ALS in forest environments and is now widely used across many applications.

Article 

Google Scholar
 

Goodbody, T. R. H. et al. Integration of airborne laser scanning data into forest ecosystem management in canada: current status and future directions. Forestry Chron. 100, 238–258 (2024). This paper outlines the integration of ALS into the management of Canadian forests, exemplifying the multi-use and cost-sharing principles of modern ALS collections.

Article 

Google Scholar
 

White, J. C. et al. Enhanced forest inventories in Canada: implementation, status, and research needs. Can. J. For. Res. 55, 1–37 (2025).


Google Scholar
 

Puliti, S. et al. Benchmarking tree species classification from proximally sensed laser scanning data: introducing the FOR-species20K dataset. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.14503 (2025). This paper demonstrates various deep learning techniques that accurately classify tree species from lidar point clouds.

Li, N. et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser Photonics Rev. 16, 2100511 (2022).

Article 
ADS 

Google Scholar
 

Stysley, P. R. et al. Long term performance of the high output maximum efficiency resonator (HOMER) laser for NASAresonator (HOMER) laser for NASA’s global ecosystem dynamics investigation (GEDI) lidar. Opt. Laser Technol. 68, 67–72 (2015).

Article 
ADS 

Google Scholar
 

Magruder, L., Brunt, K., Neumann, T., Klotz, B. & Alonzo, M. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter. Earth Space Sci. 8, e2020EA001414 (2021).

Article 
ADS 

Google Scholar
 

Hopkinson, C., Chasmer, L., Gynan, C., Mahoney, C. & Sitar, M. Multisensor and multispectral LiDAR characterization and classification of a forest environment. Can. J. Remote. Sens. 42, 501–520 (2016).

Article 
ADS 

Google Scholar
 

Szafarczyk, A. & Toś, C. The use of green laser in LiDAR bathymetry: state of the art and recent advancements. Sensors 23, 292 (2022).

Article 
ADS 

Google Scholar
 

Irwin, L., Coops, N. C., Queinnec, M., McCartney, G. & White, J. C. Single photon lidar signal attenuation under boreal forest conditions. Remote. Sens. Lett. 12, 1049–1060 (2021).

Article 

Google Scholar
 

Degnan, J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping. Remote. Sens. 8, 958 (2016).

Article 
ADS 

Google Scholar
 

Gluckman, J. Design of the processing chain for a high-altitude, airborne, single photon lidar mapping instrument. In Laser Radar Technology and Applications XXI Vol. 9832 (eds Turner, M. D. & Kamerman, G. W.) 1–9 (SPIE, 2016).

Riu, J., Sicard, M., Royo, S. & Comerón, A. Silicon photomultiplier detector for atmospheric lidar applications. Opt. Lett. 37, 1229 (2012).

Article 
ADS 

Google Scholar
 

Buzhan, P. et al. Silicon photomultiplier and its possible applications. Nucl. Instrum. Methods Phys. Res. Sect. A 504, 48–52 (2003).

Article 
ADS 

Google Scholar
 

White, J. C. et al. Evaluating the capacity of single photon lidar for terrain characterization under a range of forest conditions. Remote. Sens. Environ. 252, 112169 (2021).

Article 

Google Scholar
 

Brown, R., Hartzell, P. & Glennie, C. Evaluation of SPL100 Single Photon Lidar Data. Remote Sensing. 12, 722 (2020).

Article 
ADS 

Google Scholar
 

Shan, J. & Toth, C. K. Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, 2018). This text explains the fundamentals of laser scanning and its applications in topography and across other disciplines.

Glira, P., Pfeifer, N. & Mandlburger, G. Rigorous strip adjustment of UAV-based laser scanning data including time-dependent correction of trajectory errors. Photogramm. Eng. Remote Sens. 82, 945–954 (2016).

Article 
ADS 

Google Scholar
 

Wang, X., Liang, X., Campos, M., Zhang, J. & Wang, Y. Benchmarking of laser-based simultaneous localization and mapping methods in forest environments. IEEE Trans. Geosci. Remote. Sens. 62, 1–21 (2024).


Google Scholar
 

Ullrich, A. Resolving range ambiguities in high-repetition rate airborne light detection and ranging applications. J. Appl. Remote. Sens. 6, 063552 (2012).

Article 

Google Scholar
 

Rieger, P. Range ambiguity resolution technique applying pulse-position modulation in time-of-flight scanning lidar applications. Opt. Eng. 53, 061614 (2014).

Article 
ADS 

Google Scholar
 

Kersten, T. P. & Lindstaedt, M. Geometric accuracy investigations of terrestrial laser scanner systems in the laboratory and in the field. Appl. Geomat. 14, 421–434 (2022).

Article 

Google Scholar
 

Lin, Y., Hyyppä, J. & Kukko, A. Stop-and-go mode: sensor manipulation as essential as sensor development in terrestrial laser scanning. Sensors 13, 8140–8154 (2013).

Article 
ADS 

Google Scholar
 

Knechtel, J., Klingbeil, L., Haunert, J.-H. & Dehbi, Y. Optimal position and path planning for stop-and-go laser scanning for the acquisition of 3D building models. In ISPRS Ann. Photogrammetry, Remote. Sens. Spat. Inf. Sci. Vol. V-4-2022 (eds Zlatanova S. et al.) 129–136 (ISPRS, 2022).

Weiser, H. et al. Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth Syst. Sci. Data 14, 2989–3012 (2022).

Article 
ADS 

Google Scholar
 

Kissling, W. D. et al. Country-wide data of ecosystem structure from the third Dutch airborne laser scanning survey. Data Brief. 46, 108798 (2023).

Article 

Google Scholar
 

Vosselman, G. Automated planimetric quality control in high accuracy airborne laser scanning surveys. ISPRS J. Photogramm. Remote. Sens. 74, 90–100 (2012).

Article 
ADS 

Google Scholar
 

Takeuchi, N., Baba, H., Sakurai, K. & Ueno, T. Diode-laser random-modulation CW lidar. Appl. Opt. 25, 63 (1986).

Article 
ADS 

Google Scholar
 

Nasim, H. & Jamil, Y. Diode lasers: from laboratory to industry. Opt. Laser Technol. 56, 211–222 (2014).

Article 
ADS 

Google Scholar
 

Fitzgerald A. M. MEMS inertial sensors. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications Vol. 2 (eds Morton Y. et al.) 1435–1446 (Wiley, 2021).

Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).

Article 

Google Scholar
 

Toth, C. & Jóźków, G. Remote sensing platforms and sensors: a survey. ISPRS J. Photogramm. Remote. Sens. 115, 22–36 (2016).

Article 
ADS 

Google Scholar
 

Thomas, T. C., Luthcke, S. B., Pennington, T. A., Nicholas, J. B. & Rowlands, D. D. ICESat-2 precision orbit determination. Earth Space Sci. 8, e2020EA001496 (2021).

Article 
ADS 

Google Scholar
 

Sun, X. Review of photodetectors for space lidars. Sensors 24, 6620 (2024).

Article 
ADS 

Google Scholar
 

Neumann, T. A. et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system. Remote. Sens. Environ. 233, 111325 (2019).

Article 

Google Scholar
 

Brede, B. et al. Non-destructive tree volume estimation through quantitative structure modelling: comparing UAV laser scanning with terrestrial LIDAR. Remote. Sens. Environ. 233, 111355 (2019).

Article 

Google Scholar
 

Dubayah, R. et al. GEDI launches a new era of biomass inference from space. Environ. Res. Lett. 17, 095001 (2022).

Article 
ADS 

Google Scholar
 

Deems, J. S., Painter, T. H. & Finnegan, D. C. Lidar measurement of snow depth: a review. J. Glaciol. 59, 467–479 (2013).

Article 
ADS 

Google Scholar
 

Côté, J.-F., Fournier, R. A. & Egli, R. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ. Model. Softw. 26, 761–777 (2011).

Article 

Google Scholar
 

Hodgson, M. E. & Bresnahan, P. Accuracy of airborne lidar-derived elevation: empirical assessment and error budget. Photogramm. Eng. Remote. Sens. 70, 331–339 (2004).

Article 
ADS 

Google Scholar
 

May, N. C. & Toth, C. Point positioning accuracy of airborne LIDAR systems: a rigorous analysis. In PIA07: Photogramm. Image Analysis Vol. 36 (eds Stilla U. et al.) 107–111 (ISPRS, 2007).

Bae, S. et al. Performance of ICESat-2 precision pointing determination. Earth Space Sci. 8, e2020EA001478 (2021).

Article 
ADS 

Google Scholar
 

Acar, M. et al. Deformation analysis with total least squares. Nat. Hazards Earth Syst. Sci. 6, 663–669 (2006).

Article 
ADS 

Google Scholar
 

Besl, P. J. & McKay, N. D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

Article 
ADS 

Google Scholar
 

Glira, P., Pfeifer, N., Briese, C. & Ressl, C. A correspondence framework for ALS strip adjustments based on variants of the ICP algorithm. PFG 2015, 275–289 (2015).

Article 

Google Scholar
 

Legat, K. Approximate direct georeferencing in national coordinates. ISPRS J. Photogramm. Remote. Sens. 60, 239–255 (2006).

Article 
ADS 

Google Scholar
 

Makadia, A., Patterson, A. I. & Daniilidis, K. Fully automatic registration of 3D point clouds. In 2006 IEEE Computer Society Conf. Computer Vision and Pattern Recognition—Volume 1 (CVPR’06) Vol. 1 1297–1304 (IEEE, 2006).

Schröder, D., Anders, K., Winiwarter, L. & Wujanz, D. Permanent terrestrial LiDAR monitoring in mining, natural hazard prevention and infrastructure protection—chances, risks, and challenges: a case study of a rockfall in Tyrol, Austria. In Proc. 5th Joint Int. Symp. Deformation Monitoring—JISDM 2022 (Editorial de la Univ. Politècnica de València, 2022).

Kuhlmann, H., Schwieger, V., Wieser, A. & Niemeier, W. Engineering geodesy—definition and core competencies. J. Appl. Geodesy 8, 279–290 (2014).

Article 

Google Scholar
 

Axelsson, P. Processing of laser scanner data—algorithms and applications. ISPRS J. Photogramm. Remote. Sens. 54, 138–147 (1999).

Article 
ADS 

Google Scholar
 

Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote. Sens. 33, 110–117 (2000).


Google Scholar
 

Zhao, X. et al. A comparison of LiDAR filtering algorithms in vegetated mountain areas. Can. J. Remote. Sens. 44, 287–298 (2018).

Article 
ADS 

Google Scholar
 

Jin, S., Su, Y., Zhao, X., Hu, T. & Guo, Q. A point-based fully convolutional neural network for airborne LiDAR ground point filtering in forested environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 13, 3958–3974 (2020).

Article 
ADS 

Google Scholar
 

Van Ewijk, K. Y., Treitz, P. M. & Scott, N. A. Characterizing forest succession in central Ontario using lidar-derived indices. Photogramm. Eng. Remote. Sens. 77, 261–269 (2011).

Article 
ADS 

Google Scholar
 

Lefsky, M. A. et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote. Sens. Environ. 70, 339–361 (1999).

Article 
ADS 

Google Scholar
 

Drake, J. B. et al. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote. Sens. Environ. 79, 305–319 (2002).

Article 
ADS 

Google Scholar
 

Popescu, S. C. & Wynne, R. H. Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm. Eng. Remote. Sens. 70, 589–604 (2004).

Article 
ADS 

Google Scholar
 

Zhao, H., Morgenroth, J., Pearse, G. & Schindler, J. A systematic review of individual tree crown detection and delineation with convolutional neural networks (CNN). Curr. Forestry Rep. 9, 149–170 (2023).

Article 

Google Scholar
 

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R. & Pfeifer, N. Georeferenced point clouds: a survey of features and point cloud management. IJGI 2, 1038–1065 (2013).

Article 
ADS 

Google Scholar
 

Remondino, F. From point cloud to surface: the modeling and visualization problem. In Int. Workshop on Visualization and Animation of Reality-based 3D Models (eds Gruen A. et al.) 1–11 (ISPRS, 2003).

Li, J. & Wong, D. W. S. Effects of DEM sources on hydrologic applications. Computers Environ. Urban. Syst. 34, 251–261 (2010).

Article 

Google Scholar
 

Lague, D., Brodu, N. & Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote. Sens. 82, 10–26 (2013).

Article 
ADS 

Google Scholar
 

Ötsch, E., Harmening, C. & Neuner, H. Investigation of space-continuous deformation from point clouds of structured surfaces. J. Appl. Geodesy 17, 1–13 (2023).


Google Scholar
 

Harmening, C., Hobmaier, C. & Neuner, H. Laser scanner-based deformation analysis using approximating B-spline surfaces. Remote. Sens. 13, 3551 (2021).

Article 
ADS 

Google Scholar
 

Gojcic, Z., Zhou, C. & Wieser, A. F2S3: robustified determination of 3D displacement vector fields using deep learning. J. Appl. Geodesy 14, 177–189 (2020).

Article 
ADS 

Google Scholar
 

De Gélis, I., Lefèvre, S. & Corpetti, T. Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning. ISPRS J. Photogramm. Remote. Sens. 197, 274–291 (2023).

Article 
ADS 

Google Scholar
 

Han, M., Sha, J., Wang, Y. & Wang, X. PBFormer: point and bi-spatiotemporal transformer for pointwise change detection of 3D urban point clouds. Remote. Sens. 15, 2314 (2023).

Article 
ADS 

Google Scholar
 

Kharroubi, A., Poux, F., Ballouch, Z., Hajji, R. & Billen, R. Three dimensional change detection using point clouds: a review. Geomatics 2, 457–485 (2022).

Article 

Google Scholar
 

Schwarz, R. K., Pfeifer, N., Pfennigbauer, M. & Mandlburger, G. Depth measurement bias in pulsed airborne laser hydrography induced by chromatic dispersion. IEEE Geosci. Remote. Sens. Lett. 18, 1332–1336 (2021).

Article 
ADS 

Google Scholar
 

Guenther, G. C., Cunningham, A. G., LaRocque, P. E. & Reid, D. J. Meeting the accuracy challenge in airborne laser bathymetry. In Proc. EARSeL LiDAR Workshop Vol. 1, 1–27 (EARSeL, 2000).

Mandlburger, G., Pfennigbauer, M. & Pfeifer, N. Analyzing near water surface penetration in laser bathymetry—a case study at the River Pielach. In ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. Vol. II-5/W2 (eds Scaioni M. et al.) 175–180 (ISPRS, 2013).

Wang, C. et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry. ISPRS J. Photogramm. Remote. Sens. 101, 22–35 (2015).

Article 
ADS 

Google Scholar
 

Schwarz, R., Mandlburger, G., Pfennigbauer, M. & Pfeifer, N. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters. ISPRS J. Photogramm. Remote. Sens. 150, 1–10 (2019).

Article 
ADS 

Google Scholar
 

Schwarz, R., Pfeifer, N., Pfennigbauer, M. & Ullrich, A. Exponential decomposition with implicit deconvolution of lidar backscatter from the water column. PFG 85, 159–167 (2017).

Article 

Google Scholar
 

Mitchell, S., Thayer, J. P. & Hayman, M. Polarization lidar for shallow water depth measurement. Appl. Opt. 49, 6995 (2010).

Article 
ADS 

Google Scholar
 

Ackroyd, C., Donahue, C. P., Menounos, B. & Skiles, S. M. Airborne lidar intensity correction for mapping snow cover extent and effective grain size in mountainous terrain. GIScience Remote Sens. 61, 2427326 (2024).

Article 

Google Scholar
 

Studinger, M. et al. Estimating differential penetration of green (532 nm) laser light over sea ice with NASA’s airborne topographic mapper: observations and models. Cryosphere 18, 2625–2652 (2024).

Article 
ADS 

Google Scholar
 

White, J. C. et al. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Forestry Chron. 89, 722–723 (2013).

Article 

Google Scholar
 

Keefe, R. F., Zimbelman, E. G. & Picchi, G. Use of individual tree and product level data to improve operational forestry. Curr. Forestry Rep. 8, 148–165 (2022).

Article 

Google Scholar
 

Krisanski, S., Taskhiri, M. S., Gonzalez Aracil, S., Herries, D. & Turner, P. Sensor agnostic semantic segmentation of structurally diverse and complex forest point clouds using deep learning. Remote Sens. 13, 1413 (2021).

Article 
ADS 

Google Scholar
 

Puliti, S., Breidenbach, J. & Astrup, R. Estimation of forest growing stock volume with UAV laser scanning data: can it be done without field data? Remote Sens. 12, 1245 (2020).

Article 
ADS 

Google Scholar
 

Seely, H. et al. Modelling tree biomass using direct and additive methods with point cloud deep learning in a temperate mixed forest. Sci. Remote Sens. 8, 100110 (2023).

Article 

Google Scholar
 

Yrttimaa, T. et al. Exploring tree growth allometry using two-date terrestrial laser scanning. For. Ecol. Manag. 518, 120303 (2022).

Article 

Google Scholar
 

Riofrío, J., White, J. C., Tompalski, P., Coops, N. C. & Wulder, M. A. Harmonizing multi-temporal airborne laser scanning point clouds to derive periodic annual height increments in temperate mixedwood forests. Can. J. For. Res. 52, 1334–1352 (2022).

Article 
ADS 

Google Scholar
 

Tompalski, P. et al. Estimating changes in forest attributes and enhancing growth projections: a review of existing approaches and future directions using airborne 3D point cloud data. Curr. Forestry Rep. 7, 1–24 (2021).

Article 

Google Scholar
 

Jarron, L. R., Coops, N. C., MacKenzie, W. H., Tompalski, P. & Dykstra, P. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sens. Environ. 244, 111770 (2020).

Article 

Google Scholar
 

Dakin Kuiper, S. et al. Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sens. Environ. 272, 112948 (2022).

Article 

Google Scholar
 

Stackhouse, L. A. et al. Characterizing riparian vegetation and classifying riparian extent using airborne laser scanning data. Ecol. Indic. 152, 110366 (2023).

Article 

Google Scholar
 

Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A. & Yuill, A. Characterizing streams and riparian areas with airborne laser scanning data. Remote Sens. Environ. 192, 73–86 (2017).

Article 
ADS 

Google Scholar
 

Dakin Kuiper, S., Coops, N. C., Jarron, L. R., Tompalski, P. & White, J. C. An automated approach to detecting instream wood using airborne laser scanning in small coastal streams. Int. J. Appl. Earth Obs. Geoinf. 118, 103272 (2023).


Google Scholar
 

Jarron, L. R., Coops, N. C., MacKenzie, W. H. & Dykstra, P. Detection and quantification of coarse woody debris in natural forest stands using airborne LiDAR. For. Sci. 67, 550–563 (2021).


Google Scholar
 

Cosgrove, C., Coops, N., Waterhouse, F. & Goodbody, T. Modeling marbled murrelet nesting habitat: a quantitative approach using airborne laser scanning data in British Columbia, Canada. Avian Conserv. Ecol. 19, art5 (2024).

Article 

Google Scholar
 

Neuenschwander, A. & Pitts, K. The ATL08 land and vegetation product for the ICESat-2 mission. Remote Sens. Environ. 221, 247–259 (2019).

Article 
ADS 

Google Scholar
 

Queinnec, M., Coops, N. C. & White, J. C. Characterizing post-fire northern boreal forest height dynamics. Int. J. Remote Sens. 45, 2182–2207 (2024).

Article 

Google Scholar
 

Travers-Smith, H. et al. Mapping vegetation height and identifying the northern forest limit across Canada using ICESat-2, Landsat time series and topographic data. Remote Sens. Environ. 305, 114097 (2024).

Article 

Google Scholar
 

Arkin, J., Coops, N. C., Daniels, L. D. & Plowright, A. Estimation of vertical fuel layers in tree crowns using high density LiDAR data. Remote Sens. 13, 4598 (2021).

Article 
ADS 

Google Scholar
 

Gerbrecht, E. C., Coops, N. C., Carroll, A. L., Bater, C. W. & Buechner, L. Estimation of forest structure and fuel change across mountain pine beetle-attacked forests using mobile and RPAS-based LiDAR. Can. J. Remote Sensing. 51, 2505418 (2025).

Article 

Google Scholar
 

Qi, Y., Coops, N. C., Daniels, L. D. & Butson, C. R. Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions. ISPRS J. Photogramm. Remote Sens. 192, 49–65 (2022).

Article 
ADS 

Google Scholar
 

Kraus, K. & Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).

Article 
ADS 

Google Scholar
 

Fabbri, S., Sauro, F., Santagata, T., Rossi, G. & De Waele, J. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: an example from the Lessini Mountains (North Italy). Geomorphology 280, 16–29 (2017).

Article 
ADS 

Google Scholar
 

Xiong, L., Li, S., Tang, G. & Strobl, J. Geomorphometry and terrain analysis: data, methods, platforms and applications. Earth Sci. Rev. 233, 104191 (2022).

Article 

Google Scholar
 

Passalacqua, P. et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth Sci. Rev. 148, 174–193 (2015).

Article 
ADS 

Google Scholar
 

Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).

Article 
ADS 

Google Scholar
 

Brasington, J., Vericat, D. & Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 48, W11519 (2012).

Article 
ADS 

Google Scholar
 

Wheaton, J. M., Brasington, J., Darby, S. E. & Sear, D. A. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf. Process. Landf. 35, 136–156 (2010).

Article 
ADS 

Google Scholar
 

Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards 61, 5–28 (2012).

Article 

Google Scholar
 

Dietrich, A. & Krautblatter, M. Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany). Earth Surf. Process. Landf. 44, 1346–1361 (2019).

Article 
ADS 

Google Scholar
 

Jaboyedoff, M. et al. in Natural Hazards (eds Singh, R. P. & Bartlett, D.) 397–420 (CRC, 2018).

Evans, I. S. Geomorphometry and landform mapping: what is a landform? Geomorphology 137, 94–106 (2012).

Article 
ADS 

Google Scholar
 

Tarolli, P. High-resolution topography for understanding earth surface processes: opportunities and challenges. Geomorphology 216, 295–312 (2014).

Article 
ADS 

Google Scholar
 

Székely, B., Zámolyi, A., Draganits, E. & Briese, C. Geomorphic expression of neotectonic activity in a low relief area in an airborne laser scanning DTM: a case study of the Little Hungarian Plain (Pannonian Basin). Tectonophysics 474, 353–366 (2009).

Article 
ADS 

Google Scholar
 

Qin, R., Tian, J. & Reinartz, P. 3D change detection—approaches and applications. ISPRS J. Photogramm. Remote Sens. 122, 41–56 (2016).

Article 
ADS 

Google Scholar
 

Rosser, N. J., Petley, D. N., Lim, M., Dunning, S. A. & Allison, R. J. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. QJEGH 38, 363–375 (2005).

Article 

Google Scholar
 

Jaboyedoff, M. et al. Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can. Geotech. J. 46, 1379–1390 (2009).

Article 

Google Scholar
 

Abellán, A., Calvet, J., Vilaplana, J. M. & Blanchard, J. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119, 162–171 (2010).

Article 
ADS 

Google Scholar
 

Anders, N. S., Seijmonsbergen, A. C. & Bouten, W. Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. IEEE Geosci. Remote Sens. Lett. 10, 1587–1591 (2013).

Article 
ADS 

Google Scholar
 

Goodwin, N. R., Armston, J., Stiller, I. & Muir, J. Assessing the repeatability of terrestrial laser scanning for monitoring gully topography: a case study from Aratula, Queensland, Australia. Geomorphology 262, 24–36 (2016).

Article 
ADS 

Google Scholar
 

Cosma, M. et al. Sedimentology of a hypertidal point bar (Mont-Saint-Michel Bay, north-western France) revealed by combining lidar time-series and sedimentary core data. Sedimentology 69, 1179–1208 (2022).

Article 
ADS 

Google Scholar
 

Lindenbergh, R. C., Soudarissanane, S. S., De Vries, S., Gorte, B. G. H. & De Schipper, M. A. Aeolian beach sand transport monitored by terrestrial laser scanning. Photogramm. Record 26, 384–399 (2011).

Article 

Google Scholar
 

Lindenbergh, R. et al. Permanent terrestrial laser scanning for near-continuous environmental observations: systems, methods, challenges and applications. ISPRS Open J. Photogramm. Remote Sens. 17, 100094 (2025).

Article 

Google Scholar
 

Czerwonka-Schröder, D. & Gaisecker, T. The permanent three-dimensional data acquisition of geotechnical structures by means of a web-based application of terrestrial LiDAR sensors. Geomech. Tunn. 15, 596–604 (2022).


Google Scholar
 

Kromer, R. A. et al. Automated terrestrial laser scanning with near-real-time change detection—monitoring of the Séchilienne landslide. Earth Surf. Dynam. 5, 293–310 (2017).

Article 
ADS 

Google Scholar
 

Vos, S. et al. A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. Sci Data 9, 191 (2022).

Article 

Google Scholar
 

Campos, M. B. et al. A long-term terrestrial laser scanning measurement station to continuously monitor structural and phenological dynamics of boreal forest canopy. Front. Plant Sci. 11, 606752 (2021).

Article 

Google Scholar
 

Williams, J. G., Rosser, N. J., Hardy, R. J. & Brain, M. J. The importance of monitoring interval for rockfall magnitude–frequency estimation. JGR Earth Surface 124, 2841–2853 (2019).

Article 
ADS 

Google Scholar
 

Perks, M. T., Pitman, S. J., Bainbridge, R., Díaz-Moreno, A. & Dunning, S. A. An evaluation of low-cost terrestrial lidar sensors for assessing hydrogeomorphic change. Earth Space Sci. 11, e2024EA003514 (2024).

Article 
ADS 

Google Scholar
 

Ruttner-Jansen, P. et al. Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors. Nat. Hazards Earth Syst. Sci. 25, 1315–1330 (2025).

Article 
ADS 

Google Scholar
 

Mandlburger, G. A review of active and passive optical methods in hydrography. IHR 28, 8–52 (2022).

Article 

Google Scholar
 

Wozencraft, J. & Millar, D. Airborne lidar and integrated technologies for coastal mapping and nautical charting. Mar. Technol. Soc. J. 39, 27–35 (2005).

Article 

Google Scholar
 

Hickman, G. D. & Hogg, J. E. Application of an airborne pulsed laser for near shore bathymetric measurements. Remote Sens. Environ. 1, 47–58 (1969).

Article 
ADS 

Google Scholar
 

Parrish, C. E., Dijkstra, J. A., O’Neil-Dunne, J. P. M., McKenna, L. & Pe’eri, S. Post-sandy benthic habitat mapping using new topobathymetric lidar technology and object-based image classification. J. Coastal Res. 76, 200–208 (2016).

Article 

Google Scholar
 

European Parliament. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Publications Office of the European Union. Document 32000L0060 (European Parliament, 2000).

Richter, K., Maas, H.-G., Westfeld, P. & Weiß, R. An approach to determining turbidity and correcting for signal attenuation in airborne lidar bathymetry. PFG 85, 31–40 (2017).

Article 

Google Scholar
 

Rhomberg-Kauert, J., Dammert, L., Grömer, M., Pfennigbauer, M. & Mandlburger, G. Macrophyte detection with bathymetric LiDAR—applications of high-dimensional data analysis for submerged ecosystems. IHR 30, 98–115 (2024).

Article 

Google Scholar
 

Haslinger, K. et al. Increasing hourly heavy rainfall in Austria reflected in flood changes. Nature 639, 667–672 (2025).

Article 
ADS 

Google Scholar
 

Danielson, J. J. et al. Topobathymetric elevation model development using a new methodology: coastal national elevation database. J. Coastal Res. 76, 75–89 (2016).

Article 

Google Scholar
 

Bhardwaj, A., Sam, L., Bhardwaj, A. & Martín-Torres, F. J. LiDAR remote sensing of the cryosphere: present applications and future prospects. Remote Sens. Environ. 177, 125–143 (2016).

Article 
ADS 

Google Scholar
 

Hopkinson, C., Sitar, M., Chasmer, L. & Treitz, P. Mapping snowpack depth beneath forest canopies using airborne lidar. Photogramm. Eng. Remote Sens. 70, 323–330 (2004).

Article 
ADS 

Google Scholar
 

Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J. & Guo, Q. LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci. 18, 4261–4275 (2014).

Article 
ADS 

Google Scholar
 

Schöber, J. et al. Snow cover characteristics in a glacierized catchment in the Tyrolean Alps—improved spatially distributed modelling by usage of lidar data. J. Hydrol. 519, 3492–3510 (2014).

Article 
ADS 

Google Scholar
 

Varhola, A. et al. The influence of ground- and lidar-derived forest structure metrics on snow accumulation and ablation in disturbed forests. Can. J. For. Res. 40, 812–821 (2010).

Article 
ADS 

Google Scholar
 

Hopkinson, C. & Demuth, M. N. Using airborne lidar to assess the influence of glacier downwasting on water resources in the Canadian Rocky Mountains. Can. J. Remote Sens. 32, 212–222 (2006).

Article 
ADS 

Google Scholar
 

Bamber, J. L., Krabill, W., Raper, V., Dowdeswell, J. A. & Oerlemans, J. Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data. Ann. Glaciol. 42, 202–208 (2005).

Article 
ADS 

Google Scholar
 

Rees, W. G. & Arnold, N. S. Mass balance and dynamics of a valley glacier measured by high-resolution LiDAR. Polar Record 43, 311–319 (2007).

Article 

Google Scholar
 

Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B. & Rémy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci. 3, 92–95 (2010).

Article 
ADS 

Google Scholar
 

Herzfeld, U. C., Trantow, T., Lawson, M., Hans, J. & Medley, G. Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data—application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data. Sci. Remote Sens. 3, 100013 (2021).

Article 

Google Scholar
 

Zwally, H. J., Yi, D., Kwok, R. & Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. 113, 2007JC004284 (2008).

Article 

Google Scholar
 

Vinci, G., Vanzani, F., Fontana, A. & Campana, S. LiDAR applications in archaeology: a systematic review. Archaeological Prospection 32, 81–101 (2025).

Article 

Google Scholar
 

Cairo, F., Di Liberto, L., Dionisi, D. & Snels, M. Understanding aerosol–cloud interactions through lidar techniques: a review. Remote Sens. 16, 2788 (2024).

Article 
ADS 

Google Scholar
 

Chen, W. et al. Review of airborne oceanic lidar remote sensing. Intell. Mar. Technol. Syst. 1, 10 (2023).

Article 

Google Scholar
 

Churnside, J. H., Marchbanks, R. D., Vagle, S., Bell, S. W. & Stabeno, P. J. Stratification, plankton layers, and mixing measured by airborne lidar in the Chukchi and Beaufort seas. Deep Sea Res. Part II 177, 104742 (2020).

Article 

Google Scholar
 

Wang, Z. & Menenti, M. Challenges and opportunities in lidar remote sensing. Front. Remote Sens. 2, 641723 (2021).

Article 

Google Scholar
 

Næsset, E. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens. Environ. 113, 148–159 (2009).

Article 
ADS 

Google Scholar
 

Höfle, B. & Pfeifer, N. Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).

Article 
ADS 

Google Scholar
 

Isenburg, M. LASzip: lossless compression of lidar data. Photogramm. Eng. Remote Sens. 79, 209–217 (2013).

Article 
ADS 

Google Scholar
 

Neumann, T. et al. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons ATL03 Version 6 (NASA Goddard Space Flight Center, 2022).

Fassnacht, F. E., White, J. C., Wulder, M. A. & Næsset, E. Remote sensing in forestry: current challenges, considerations and directions. Forestry Int. J. For. Res. https://doi.org/10.1093/forestry/cpad024 (2023).

Winiwarter, L. et al. Virtual laser scanning with HELIOS++: a novel take on ray tracing-based simulation of topographic full-waveform 3D laser scanning. Remote Sens. Environ. 269, 112772 (2022). This paper explains the concept of VLS, which can simulate lidar point clouds from user-defined and sensor-specific parameters applied across a scene.

Article 

Google Scholar
 

Schäfer, J. et al. Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models. Forestry Int. J. For. Res. 97, 512–530 (2024).

ADS 

Google Scholar
 

Esmorís, A. M., Weiser, H., Winiwarter, L., Cabaleiro, J. C. & Höfle, B. Deep learning with simulated laser scanning data for 3D point cloud classification. ISPRS J. Photogramm.Remote Sens. 215, 192–213 (2024).

Article 
ADS 

Google Scholar
 

Takhtkeshha, N., Mandlburger, G., Remondino, F. & Hyyppä, J. Multispectral light detection and ranging technology and applications: a review. Sensors 24, 1669 (2024).

Article 
ADS 

Google Scholar
 

Murray, B. A., Coops, N. C., White, J. C., Dick, A. & Ragab, A. Tree species proportion prediction using airborne laser scanning and Sentinel-2 data within a deep learning based dual-stream data fusion approach. Int. J. Remote Sens. 46, 5436–5464 (2025).

Article 

Google Scholar
 

Queinnec, M. et al. Mapping dominant boreal tree species groups by combining area-based and individual tree crown LiDAR metrics with Sentinel-2 data. Can. J. Remote Sens. 49, 2130742 (2023).

Article 
ADS 

Google Scholar
 

Stackhouse, L. A. et al. Modeling instream temperature from solar insolation under varying timber harvesting intensities using RPAS laser scanning. Sci. Total Environ. 912, 169459 (2024).

Article 

Google Scholar
 

Coops, N. C., Goodbody, T. R. H. & Cao, L. Four steps to extend drone use in research. Nature 572, 433–435 (2019).

Article 
ADS 

Google Scholar
 

Jarraya, I. et al. GNSS-denied unmanned aerial vehicle navigation: analyzing computational complexity, sensor fusion, and localization methodologies. Satell. Navig. 6, 9 (2025).

Article 

Google Scholar
 

Olson, L. G., Coops, N. C., Moreau, G., Hamelin, R. C. & Achim, A. The assessment of individual tree canopies using drone-based intra-canopy photogrammetry. Comput. Electron. Agric. 234, 110200 (2025).

Article 

Google Scholar
 

You, H., Xu, F., Ye, Y., Xia, P. & Du, J. Adaptive LiDAR scanning based on RGB information. Autom. Constr. 160, 105337 (2024).

Article 

Google Scholar
 

Martino, A. J. et al. ICESat-2/ATLAS at 4 years: instrument performance and projected life. In Advanced Photon Counting Techniques XVII (eds Itzler, M. A., McIntosh, K. A. & Bienfang, J. C.) 17 (SPIE, 2023).

Gastellu-Etchegorry, J. P., Martin, E. & Gascon, F. DART: a 3D model for simulating satellite images and studying surface radiation budget. Int. J. Remote Sens. 25, 73–96 (2004).

Article 

Google Scholar
 

Caltagirone, L., Bellone, M., Svensson, L. & Wahde, M. LIDAR–camera fusion for road detection using fully convolutional neural networks. Robotics Autonomous Syst. 111, 125–131 (2019).

Article 

Google Scholar
 

Berrio, J. S., Shan, M., Worrall, S. & Nebot, E. Camera–LIDAR integration: probabilistic sensor fusion for semantic mapping. IEEE Trans. Intell. Transport. Syst. 23, 7637–7652 (2022).

Article 

Google Scholar
 

Mandlburger, G. et al. Improved topographic models via concurrent airborne lidar and dense image matching. In ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. Vol. IV-2/W4, 259–266 (ISPRS, 2017).

Winiwarter, L., Mandlburger, G., Schmohl, S. & Pfeifer, N. Classification of ALS point clouds using end-to-end deep learning. PFG 87, 75–90 (2019).

Article 

Google Scholar
 

Kölle, M. et al. The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo. ISPRS Open J. Photogramm. Remote Sens. 1, 100001 (2021).

Article 

Google Scholar
 

Irwin, L. UAV laser scanning—managed forest transect—classified and normalized. Zenodo https://doi.org/10.5281/zenodo.16413906 (2025).

Wang, J., Letard, M., Chang, M. & Anders, K. Terrestrial laser scanning point clouds of the Isar river bed near Wallgau acquired in August and November 2024. Zenodo https://doi.org/10.5281/zenodo.16633317 (2025).

Winiwarter, L., Anders, K. & Höfle, B. M3C2-EP: pushing the limits of 3D topographic point cloud change detection by error propagation. ISPRS J. Photogramm. Remote Sens. 178, 240–258 (2021).

Article 
ADS 

Google Scholar
 

Mandlburger, G. et al. Mapping shallow inland running waters with UAV-borne photo and laser bathymetry. J. Applied Hydrography 130, 22–31 (2025).


Google Scholar
 

Irwin, L. UAV laser scanning—managed forest—pre and post commercial thinning. Zenodo https://doi.org/10.5281/zenodo.16413783 (2025).

Irwin, L. A. K. UAV laser scanning—natural forest—normalized point cloud. Zenodo https://doi.org/10.5281/zenodo.16413742 (2025).