Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

Article 

Google Scholar
 

Hu, J., Wu, C. & Dai, X. Proposed design of a Josephson diode. Phys. Rev. Lett. 99, 067004 (2007).

Article 
ADS 

Google Scholar
 

Jiang, K. & Hu, J. Superconducting diode effects. Nat. Phys. 18, 1145–1146 (2022).

Article 

Google Scholar
 

Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

Article 
ADS 

Google Scholar
 

Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).

Article 

Google Scholar
 

Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

Article 

Google Scholar
 

Le, T. et al. Superconducting diode effect and interference patterns in kagome CsV3Sb5. Nature 630, 64–69 (2024).

Article 
ADS 

Google Scholar
 

Holmes, D. S., Ripple, A. L. & Manheimer, M. A. Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23, 1701610 (2013).

Article 
ADS 

Google Scholar
 

Soloviev, I. I. et al. Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017).

Article 

Google Scholar
 

Semenov, V. K., Polyakov, Y. A. & Tolpygo, S. K. Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29, 1–9 (2019).


Google Scholar
 

Seoane, R. S. et al. Josephson diode effect in supercurrent interferometers. Phys. Rev. Lett. 129, 267702 (2022).

Article 
ADS 

Google Scholar
 

Zazunov, A. et al. Approaching ideal rectification in superconducting diodes through multiple Andreev reflections. Preprint at https://arxiv.org/abs/2307.14698 (2023).

Bozkurt, A. M. et al. Double-Fourier engineering of Josephson energy-phase relationships applied to diodes. SciPost Phys. 15, 204 (2023).

Article 
ADS 

Google Scholar
 

Seoane, R. S. et al. Tuning the Josephson diode response with an ac current. Phys. Rev. Res. 6, L022002 (2024).

Article 

Google Scholar
 

Valentini, M. et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 15, 169 (2024).

Article 
ADS 

Google Scholar
 

Chiles, J. et al. Nonreciprocal supercurrents in a field-free graphene Josephson triode. Nano Lett. 23, 5257–5263 (2023).

Article 
ADS 

Google Scholar
 

Daido, A. et al. Unidirectional superconductivity and superconducting diode effect induced by dissipation. Phys. Rev. B 111, L020508 (2025).

Article 
ADS 

Google Scholar
 

Wang, H. et al. Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y. Nat. Commun. 14, 5201 (2023).

Article 
ADS 

Google Scholar
 

Zhu, Y. et al. Persistent Josephson tunneling between Bi2Sr2CaCu2O8+x flakes twisted by 45°across the superconducting dome. Phys. Rev. B 108, 174508 (2023).

Article 
ADS 

Google Scholar
 

Zhu, Y. et al. Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes. Phys. Rev. X 11, 031011 (2021).


Google Scholar
 

Ghosh, S. et al. High-temperature Josephson diode. Nat. Mater. 23, 612–618 (2024).

Article 
ADS 

Google Scholar
 

Nagaosa, N. et al. Concept of quantum geometry in optoelectronic processes in solids: application to solar cells. Adv. Mater. 29, 1603345 (2017).

Article 

Google Scholar
 

Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

Article 
ADS 

Google Scholar
 

Carapella, G., Granata, V., Russo, F. & Costabile, G. Bistable Abrikosov vortex diode made of a Py–Nb ferromagnet-superconductor bilayer structure. Appl. Phys. Lett. 94, 242504 (2009).

Article 
ADS 

Google Scholar
 

Hooper, J. et al. Anomalous Josephson network in the Ru-Sr2RuO4 eutectic system. Phys. Rev. B 70, 014510 (2004).

Article 
ADS 

Google Scholar
 

Díez-Mérida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

Article 
ADS 

Google Scholar
 

Lyu, Y.-Y. et al. Superconducting diode effect via conformal-mapped nanoholes. Nat. Commun. 12, 2703 (2021).

Article 
ADS 

Google Scholar
 

Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

Article 
ADS 

Google Scholar
 

Bauriedl, L. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 13, 4266 (2022).

Article 
ADS 

Google Scholar
 

Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).

Article 
ADS 

Google Scholar
 

Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

Article 

Google Scholar
 

Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022).

Article 
ADS 

Google Scholar
 

Turini, B. et al. Josephson diode effect in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

Article 
ADS 

Google Scholar
 

Portolés, E. et al. A tunable monolithic SQUID in twisted bilayer graphene. Nat. Nanotechnol. 17, 1159–1164 (2022).

Article 
ADS 

Google Scholar
 

Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).

Article 
ADS 

Google Scholar
 

Kealhofer, R., Jeong, H., Rashidi, A., Balents, L. & Stemmer, S. Anomalous superconducting diode effect in a polar superconductor. Phys. Rev. B 107, L100504 (2023).

Article 
ADS 

Google Scholar
 

Matsui, H. et al. Nonreciprocal critical current in an obliquely ion-irradiated YBa2Cu3O7 film. Appl. Phys. Lett. 122, 172601 (2023).

Article 
ADS 

Google Scholar
 

Yun, J. et al. Magnetic proximity-induced superconducting diode effect and infinite magnetoresistance in a van der Waals heterostructure. Phys. Rev. Res. 5, L022064 (2023).

Article 

Google Scholar
 

Liu, F. et al. Superconducting diode effect under time-reversal symmetry. Sci. Adv. 10, eado1502 (2024).

Article 

Google Scholar
 

Chen, P. et al. Edelstein effect induced superconducting diode effect in inversion symmetry breaking MoTe2 Josephson junctions. Adv. Funct. Mater. 34, 2311229 (2024).

Article 

Google Scholar
 

Kim, J.-K. et al. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat. Commun. 15, 1120 (2024).

Article 
ADS 

Google Scholar
 

Li, C. et al. Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking. Nano Lett. 24, 4108–4116 (2024).

Article 
ADS 

Google Scholar
 

Zhao, S. Y. F. et al. Time-reversal symmetry breaking superconductivity between twisted cuprate superconductors. Science 382, 1422–1427 (2023).

Article 
ADS 

Google Scholar
 

Wang, Z. C. et al. Correlating the charge-transfer gap to the maximum transition temperature in Bi2Sr2Can−1CunO2n+4+δ. Science 381, 227–231 (2023).

Article 
ADS 

Google Scholar
 

Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).

Article 

Google Scholar
 

Volkov, P. A. et al. Josephson diode effects in twisted nodal superconductors. Phys. Rev. B 109, 094518 (2024).

Article 
ADS 

Google Scholar
 

Nideröst, M. et al. Lower critical field Hc1 and barriers for vortex entry in Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 81, 3231–3234 (1998).

Article 
ADS 

Google Scholar
 

Clem, J. R., Coffey, M. W. & Hao, Z. Lower critical field of a Josephson-coupled layer model of high-Tc superconductors. Phys. Rev. B 44, 2732–2738 (1991).

Article 
ADS 

Google Scholar
 

Yuan, A. C. et al. Inhomogeneity-induced time-reversal symmetry breaking in cuprate twist junctions. Phys. Rev. B 108, L100505 (2023).

Article 
ADS 

Google Scholar
 

Gu, G. D. et al. Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth 130, 325–329 (1993).

Article 
ADS 

Google Scholar
 

Liu, J. et al. Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2−xPbx)Sr2CaCu2O8+δ superconductors. Chin. Phys. B 28, 077403 (2019).

Article 
ADS 

Google Scholar