Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).
Commins, P., Al-Handawi, M. B., Karothu, D. P., Raj, G. & Naumov, P. Efficiently self-healing boronic ester crystals. Chem. Sci. 11, 2606–2613 (2020).
Mondal, S. et al. Autonomous self-healing organic crystals for nonlinear optics. Nat. Commun. 13, 6589 (2023).
Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).
Bhunia, S. et al. Autonomous self-repair in piezoelectric molecular crystals. Science 373, 321–327 (2021).
Ekeocha, J. et al. Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 33, 2008052 (2021).
Liu, H., Ye, K., Zhang, Z. & Zhang, H. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew. Chem. Int. Ed. 58, 19081–19086 (2019).
Di, Q. et al. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13, 5280 (2022).
White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).
Chen, H., Ma, X., Wu, S. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).
Wei, Z. et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131 (2014).
Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).
Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).
Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).
Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Ed. 55, 13028–13032 (2016).
Kathan, M. et al. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).
Cacciapaglia, R., Stefano, S. D. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).
Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).
Al-Handawi, M. B. et al. Ferroelastic ionic organic crystals that self-heal to 95%. Nat. Commun. 15, 8095 (2024).
Meng, J., Su, Y., Zhu, H. & Cai, T. Shape memory and self-healing in a molecular crystal with inverse temperature symmetry breaking. Chem. Sci. 15, 5738–5745 (2024).
Pathan, J. R. et al. A self-healing crystal that repairs multiple cracks. J. Am. Chem. Soc. 146, 27100–27108 (2024).
Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew. Chem. Int. Ed. 57, 8498–8502 (2018).
Liu, G. et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed. 56, 198–202 (2017).
Karothu, D. P., Weston, J., Desta, I. T. & Naumov, P. Shape-memory and self-healing effects in mechanosalient molecular crystals. J. Am. Chem. Soc. 13, 13298–13306 (2016).
Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).
Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).
Yamazaki, T., Driessche, A. E. S. V. & Kimura, Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. Soft Matter 16, 1955–1960 (2020).
Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).
Sierra-Romero, A., Novakovic, K. & Geoghegan, M. A reversible water-based electrostatic adhesive. Angew. Chem. Int. Ed. 63, e202310750 (2024).
Yamaguchi, M., Ono, S. & Terano, M. Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396–1399 (2007).
Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).
Zhang, L., Bailey, J. B., Subramanian, R. H., Groisman, A. & Tezcan, F. A. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018).
Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).
Li, Y. M., Zhang, Z. P., Rong, M. Z. & Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 35, 2211009 (2023).
Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).
Commins, P., Al-Handawi, M. B. & Naumov, P. Self-healing crystals. Nat. Rev. Chem. 9, 343–355 (2025).
Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).
Xu, J., Chen, J., Zhang, Y., Liu, T. & Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 60, 7947 (2021).
Hu, J., Mo, R., Jiang, X., Sheng, X. & Zhang, X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183, 121912 (2019).
Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).
Wang, C. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 34, 2105416 (2022).
Park, S. K. & Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 49, 8287–8314 (2020).
Awad, W. M. et al. Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52, 3098–3169 (2023).
Mahmoud Halabi, J., Al-Handawi, M. B., Ceballos, R. & Naumov, P. Intersectional effects of crystal features on the actuation performance of dynamic molecular crystals. J. Am. Chem. Soc. 145, 12173–12180 (2023).
Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018).
Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (2010).
Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018).
Duan, Y., Semin, S., Tinnemans, P., Xu, J. & Rasing, T. Fully controllable structural phase transition in thermomechanical molecular crystals with a very small thermal hysteresis. Small 17, 2006757 (2021).
Commins, P. et al. Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface. Nat. Chem. 15, 677–684 (2023).
Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).
Yang, X. et al. Logarithmic and Archimedean organic crystalline spirals. Nat. Commun. 15, 9025 (2024).
Lan, L., Li, L., Wang, C., Naumov, P. & Zhang, H. Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146, 30529–30538 (2024).
Ahmed, E., Karothu, D. P. & Naumov, P. Crystal adaptronics: mechanically reconfigurable elastic and superelastic molecular crystals. Angew. Chem. Int. Ed. 57, 8837–8846 (2018).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement, and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
Macrae, C. F. et al. Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).
Lu, T. dimerscan (Beijing Kein Research Center for Natural Sciences, 2019); http://sobereva.com/soft/dimerscan
Lu, T. Molclus v.1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html
Lu, T. & Chen, Q. Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory. J. Phys. Chem. A 127, 7023–7035 (2023).
Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, Inc., 2016)
Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580−592 (2012).
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).