von Braun, J., Afsana, K., Fresco, L. O. & Ali Hasan, M. H. (eds) Science and Innovations for Food Systems Transformation (Springer International Publishing, 2023); https://doi.org/10.1007/978-3-031-15703-5

Bodirsky, B. L. et al. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 10, 19778 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

Article 

Google Scholar
 

Micha, R. Global Nutrition Report 2021 (Development Initiatives, 2021).

Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet https://doi.org/10.1016/S0140-6736(18)31788-4 (2019).

Article 
PubMed 

Google Scholar
 

Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

Article 

Google Scholar
 

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018); https://doi.org/10.1038/s41586-018-0594-0

ILO/FAO/IUF Agricultural Workers and Their Contribution to Sustainable Agriculture and Rural Development (ILO, 2007).

Policy Brief: The Impact of COVID-19 on Food Security and Nutrition (UN, 2020).

Laborde, D., Herforth, A., Headey, D. & de Pee, S. COVID-19 pandemic leads to greater depth of unaffordability of healthy and nutrient-adequate diets in low- and middle-income countries. Nat. Food 2, 473–475 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

The Importance of Ukraine and the Russian Federation for Global Agricultural Markets and the Risks Associated with the Current Conflict 47 (FAO, 2022).

Hainzelin, E. et al. in Science and Innovations for Food Systems Transformation (eds von Braun, J. et al.) 877–891 (Springer International, 2023); https://doi.org/10.1007/978-3-031-15703-5_47

Costanza, R. Visions of alternative (unpredictable) futures and their use in policy analysis. Conserv. Ecol. 4, 5 (2000).


Google Scholar
 

Bai, X. et al. Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39, 351–362 (2016).

Article 

Google Scholar
 

IPBES global assessment report on biodiversity and ecosystem services of the intergovernmental science–policy platform on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.6417333 (2019).

Intergovernmental Panel On Climate Change (ed). Annex III: scenarios and modelling methods. In Climate Change 2022 – Mitigation of Climate Change https://doi.org/10.1017/9781009157926.022 (Cambridge Univ. Press, 2023).

UNFSS Action tracks. United Nations https://www.un.org/en/food-systems-summit/action-tracks (2022).

Kemp, R. & Martens, P. Sustainable development: how to manage something that is subjective and never can be achieved?. Sustain. Sci. Pract. Policy 3, 5–14 (2007).


Google Scholar
 

Dietrich, J. P. et al. MAgPIE 4—a modular open-source framework for modeling global land systems. Geosci. Model Dev. 12, 1299–1317 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Bodirsky, B. L. et al. Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nat. Food 3, 341–348 (2022).

Article 
PubMed 

Google Scholar
 

UN Dialogues and pathways. UN Food Systems https://www.unfoodsystemshub.org/member-state-dialogue/dialogues-and-pathways/en (2020).

Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

Article 

Google Scholar
 

Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food https://doi.org/10.1038/s43016-021-00421-7 (2021).

van Vuuren, D. P. et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change https://doi.org/10.1016/j.techfore.2015.03.005 (2015).

Article 

Google Scholar
 

Emissions Gap Report (EGR) 2022: The Closing Window—Climate Crisis Calls for Rapid Transformation of Societies (UNEP, 2022).

Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

Article 
ADS 

Google Scholar
 

Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

Article 

Google Scholar
 

Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).

Doelman, J. C. et al. Quantifying synergies and trade-offs in the global water–land–food–climate nexus using a multi-model scenario approach. Environ. Res. Lett. 17, 045004 (2022).

Article 
ADS 

Google Scholar
 

Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 10, 014010 (2015).

Article 
ADS 

Google Scholar
 

Humpenöder, F. et al. Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. Nat. Commun. 13, 7453 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Schaphoff, S. et al. LPJmL4—a dynamic global vegetation model with managed land—Part 1: model description. Geosci. Model Dev. 11, 1343–1375 (2018).

Article 
ADS 
CAS 

Google Scholar
 

von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).

Article 
ADS 

Google Scholar
 

Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5, e797–e807 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Soergel, B. et al. Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. 12, 2342 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baumstark, L. et al. REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geosci. Model Dev. 14, 6571–6603 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Yukimoto, S. et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. 97, 931–965 (2019).

Article 
ADS 

Google Scholar
 

Chen, D. M.-C. et al. Future food prices will become less sensitive to agricultural market prices and mitigation costs. Nat. Food https://doi.org/10.1038/s43016-024-01099-3 (2025).

Valin, H., Hertel, T., Bodirsky, B. L., Hasegawa, T. & Stehfest, E. A Review of Quantitative Assessments of Synergies and Tradeoffs Amongst the UN Sustainable Development Goals 51 (United Nations Food Systems Summit 2021 Scientific Group, 2021).

Okunogbe, A., Nugent, R., Spencer, G., Ralston, J. & Wilding, J. Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Glob. Health 6, e006351 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Imamura, F. et al. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health 3, e132–e142 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).

Article 

Google Scholar
 

Purvis, A. et al. in Advances in Ecological Research Vol. 58 (eds Bohan, D. A. et al.) Ch 5 201–241 (Academic Press, 2018).

Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sutton, M. A. et al. Our Nutrient World: the Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology on behalf of the Global Partnership on Nutrient Management (GPNM) and the International Nitrogen Initiative (INI), 2013).

Bonsch, M. et al. Environmental flow provision: implications for agricultural water and land-use at the global scale. Glob. Environ. Change 30, 113–132 (2015).

Article 

Google Scholar
 

Yi, J. et al. Post-farmgate food value chains make up most of consumer food expenditures globally. Nat. Food 2, 417–425 (2021).

Article 
PubMed 

Google Scholar
 

Leimbach, M., Marcolino, M. & Koch, J. Structural change scenarios within the SSP framework. Futures 150, 103156 (2023).

Article 

Google Scholar
 

Worldbank World Development Report 2008: Agriculture for Development. (World Bank, Eurospan (distributor), 2007).

Banerjee, A. V. & Duflo, E. Good Economics for Hard Times: Better Answers to Our Biggest Problems (Allen Lane, 2019).

Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H. & Bouwman, A. F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Change 50, 149–163 (2018).

Article 

Google Scholar
 

Humpenöder, F. et al. Food matters: dietary shifts increase the feasibility of 1.5 °C pathways in line with the Paris Agreement. Sci. Adv. 10, eadj3832 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Latka, C. et al. Paying the price for environmentally sustainable and healthy EU diets. Glob. Food Secur. 28, 100437 (2021).

Article 

Google Scholar
 

Pfeiler, T. M. & Egloff, B. Do vegetarians feel bad? Examining the association between eating vegetarian and subjective well-being in two representative samples. Food Qual. Prefer. 86, 104018 (2020).

Article 

Google Scholar
 

Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

Article 

Google Scholar
 

Herrero, M. et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 5, e50–e62 (2021).

Article 
PubMed 

Google Scholar
 

Hadjikakou, M. et al. Ambitious food system interventions required to mitigate the risk of exceeding Earth’s environmental limits. One Earth https://doi.org/10.1016/j.oneear.2025.101351 (2025).

Orlov, A., Sillmann, J., Aunan, K., Kjellstrom, T. & Aaheim, A. Economic costs of heat-induced reductions in worker productivity due to global warming. Glob. Environ. Change 63, 102087 (2020).

Article 

Google Scholar
 

Dasgupta, S. et al. Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planet. Health 5, e455–e465 (2021).

Article 
PubMed 

Google Scholar
 

Barros, L. & Martínez-Zarzoso, I. Systematic literature review on trade liberalization and sustainable development. Sustain. Prod. Consum. 33, 921–931 (2022).

Article 

Google Scholar
 

IPCC: Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).

IPCC: Sustainable Development, Poverty Eradication and Reducing Inequalities. In: Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Cambridge Univ. Press, 2018); https://doi.org/10.1017/9781009157940

Tezanos-Vázquez, S. Why do famines still occur in the 21st Century? A review on the causes of extreme food insecurity. J. Econ. Surv. 39, 1433–1461 (2025).

Article 

Google Scholar
 

The State of Food Security and Nutrition in the World: Safeguarding against Economic Slowdowns and Downturns (FAO, 2019).

The State of Food Security and Nutrition in the World 2025 (FAO, IFAD, UNICEF, WFP, WHO, 2025); https://doi.org/10.4060/cd6008en

Pörtner, L. M. et al. We need a food system transformation—in the face of the Russia–Ukraine war, now more than ever. One Earth https://doi.org/10.1016/j.oneear.2022.04.004 (2022).

ESCAP Insights on Food System Risks—INFER. Data and methodology https://www.unescap.org/projects/infer/data-methodology (2024).

Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2012); https://doi.org/10.1017/CBO9781139177245

Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moseley, W. G. & Battersby, J. The vulnerability and resilience of African food systems, food security, and nutrition in the context of the COVID-19 pandemic. Afr. Stud. Rev. 63, 449–461 (2020).

Article 

Google Scholar
 

Kummu, M. et al. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 24, 100360 (2020).

Article 

Google Scholar
 

Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

Article 

Google Scholar
 

Merfort, L. et al. Bioenergy-induced land-use-change emissions with sectorally fragmented policies. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01697-2 (2023).

Newell, P. & Mulvaney, D. The political economy of the ‘just transition’. Geogr. J. 179, 132–140 (2013).

Article 

Google Scholar
 

ZKL The Future of Agriculture—A Common Agenda 136 (Commission on the Future of Agriculture Office, 2021); http://bmel.de/goto?id=91482

Wang, X., Bodirsky, B. L., Müller, C., Chen, K. Z. & Yuan, C. The triple benefits of slimming and greening the Chinese food system. Nat. Food https://doi.org/10.1038/s43016-022-00580-1 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fesenfeld, L. P., Wicki, M., Sun, Y. & Bernauer, T. Policy packaging can make food system transformation feasible. Nat. Food 1, 173–182 (2020).

Article 

Google Scholar
 

Malbon, E. & Parkhurst, J. System dynamics modelling and the use of evidence to inform policymaking. Policy Stud. 44, 1–19 (2022).


Google Scholar
 

Wang, X. et al. Bundled measures for China’s food system transformation reveal social and environmental co-benefits. Nat. Food https://doi.org/10.1038/s43016-024-01100-z (2025).

Köberle, A. C. et al. Livestock Intensification and the Role of Finance in the Food System Transformation in Brazil (Food System Economics Commission, 2023).

Singh, V. et al. An inclusive agri-food systems transformation pathway for India. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4767324/v1 (2024).

Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).

Article 

Google Scholar
 

Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Springmann, M. et al. Health-motivated taxes on red and processed meat: a modelling study on optimal tax levels and associated health impacts. PLoS ONE 13, e0204139 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Springmann, M. et al. The healthiness and sustainability of national and global food based dietary guidelines: modelling study. BMJ https://doi.org/10.1136/bmj.m2322 (2020).

Dietrich, J. P. et al. MAgPIE—an open source land-use modeling framework. Zenodo https://doi.org/10.5281/zenodo.7920802 (2023).

Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

Article 

Google Scholar
 

Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 1–9 (2011).

Article 

Google Scholar
 

Weindl, I. et al. Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. Glob. Planet. Change 159, 1–10 (2017).

Article 
ADS 

Google Scholar
 

Weindl, I. et al. Livestock production and the water challenge of future food supply: implications of agricultural management and dietary choices. Glob. Environ. Change 47, 121–132 (2017).

Article 

Google Scholar
 

Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A. & Müller, C. Forecasting technological change in agriculture—an endogenous implementation in a global land use model. Technol. Forecast. Soc. Change 81, 236–249 (2014).

Article 

Google Scholar
 

Mishra, A. et al. Estimating global land system impacts of timber plantations using MAgPIE 4.3.5. Geosci. Model Dev. 14, 6467–6494 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Harmsen, M. et al. Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility. Nat. Commun. 14, 2949 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

New food balances. Description of utilization variables. FAOSTAT (FAO, 2022); https://files-faostat.fao.org/production/FBS/New%20FBS%20methodology.pdf

Gustavsson, J., Cedersberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste (FAO, 2011); http://www.fao.org/3/mb060e/mb060e00.htm

Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Lutz, F. et al. Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). Geosci. Model Dev. 12, 2419–2440 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Herzfeld, T., Heinke, J., Rolinski, S. & Müller, C. Soil organic carbon dynamics from agricultural management practices under climate change. Earth Syst. Dyn. 12, 1037–1055 (2021).

Article 
ADS 

Google Scholar
 

Springmann, M. & Freund, F. Options for reforming agricultural subsidies from health, climate, and economic perspectives. Nat. Commun. 13, 82 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Murray, C. J., Ezzati, M., Lopez, A. D., Rodgers, A. & Vander Hoorn, S. Comparative quantification of health risks: conceptual framework and methodological issues. Popul. Health Metr. 1, 1 (2003).

Article 
PubMed 
PubMed Central 

Google Scholar
 

GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

Article 

Google Scholar
 

Afshin, A., Micha, R., Khatibzadeh, S. & Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis1234. Am. J. Clin. Nutr. 100, 278–288 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aune, D. et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 14, 207 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aune, D. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 46, 1029–1056 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schwingshackl, L. et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 32, 363–375 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schwingshackl, L. et al. Food groups and risk of colorectal cancer. Int. J. Cancer 142, 1748–1758 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Bechthold, A. et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 59, 1071–1090 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Global, B. M. I. Mortality collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388, 776–786 (2016).

Article 

Google Scholar
 

Wang, H. et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1160–1203 (2020).

Article 

Google Scholar
 

NCD-RisC Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

Article 

Google Scholar
 

Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2021).

Kikstra, J. S. et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geosci. Model Dev. 15, 9075–9109 (2022).

Article 
ADS 

Google Scholar
 

Riahi, K. et al. Mitigation Pathways Compatible with Long-term Goals. in IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2018).

Vuuren, D. van et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

Article 
ADS 

Google Scholar
 

O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

Article 
ADS 

Google Scholar
 

Lange, S. & Büchner, M. ISIMIP3b bias-adjusted atmospheric climate input data. ISIMIP https://doi.org/10.48364/ISIMIP.842396.1 (2021).

Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

Article 
ADS 

Google Scholar
 

Rao, N. D., Sauer, P., Gidden, M. & Riahi, K. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39 (2019).

Article 

Google Scholar
 

Strefler, J. et al. Alternative carbon price trajectories can avoid excessive carbon removal. Nat. Commun. 12, 2264 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Global Environ. Change 42, 181–192 (2017).

Article 

Google Scholar
 

Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Global Environ. Change 42, 200–214 (2017).

Article 

Google Scholar
 

Rafaj, P. et al. Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environ. Res. Lett. 16, 045005 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Rauner, S., Hilaire, J., Klein, D., Strefler, J. & Luderer, G. Air quality co-benefits of ratcheting up the NDCs. Clim. Change 163, 1481–1500 (2020).

Article 
ADS 

Google Scholar
 

Fujino, J., Nair, R., Kainuma, M., Masui, T. & Matsuoka, Y. Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy J. 27, 343–353 (2006).

Article 

Google Scholar
 

Bodirsky, B. L. et al. Reproduction package for “A food system transformation can enhance global health, environmental conditions and social inclusion”. Zenodo https://doi.org/10.5281/zenodo.17233328 (2025).

Müller, C. et al. LPJmL4 and LPJmL5 source code for FSEC Food Systems Transformation assessment. Zenodo https://doi.org/10.5281/zenodo.7912370 (2023).

Bodirsky, B. L., Dietrich, J. P., & Humpenoeder, F. m4fsdp: MAgPIE outputs R package for MAgPIE version 4.x to create outputs for FSDP project (v0.43.9). Zenodo https://doi.org/10.5281/zenodo.7899914 (2023).

Lassen, A. D., Christensen, L. M. & Trolle, E. Development of a Danish adapted healthy plant-based diet based on the EAT–Lancet reference diet. Nutrients 12, 738 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schmitz, C. et al. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 49, 3601–3617 (2013).

Article 
ADS 

Google Scholar
 

Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).

Article 
ADS 

Google Scholar
 

Braakhekke, M. C. et al. Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth Syst. Dyn. 10, 617–630 (2019).

Article 
ADS 

Google Scholar
 

Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Glob. Change Biol. 24, 3199–3213 (2018).

Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).

Article 
ADS 

Google Scholar
 

Smakhtin, V., Revenga, C. & Döll, P. A pilot global assessment of environmental water requirements and scarcity. Water Int. 29, 307–317 (2004).

Article 
CAS 

Google Scholar
 

Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hurtt, G. C. et al. Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2019-360 (2020).

Bodirsky, B. L. et al. Global food demand scenarios for the 21st century. PLoS One https://doi.org/10.1371/journal.pone.0139201 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

Article 
ADS 

Google Scholar
 

Global Plastics Outlook: Policy Scenarios to 2060 (Organisation for Economic Co-operation and Development, 2022).

Mishra, A. et al. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 13, 4889 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bodirsky, B. L. Agricultural Nitrogen Pollution: the Human Food-print (TU Berlin, 2014).