Mauser, H. Key Questions on Forests in the EU (European Forest Institute, 2021).

Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).

CAS 

Google Scholar
 

Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).

CAS 

Google Scholar
 

Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011).


Google Scholar
 

State of Europe’s Forests 2020 (Forest Europe, 2020).

Laudon, H., Mensah, A. A., Fridman, J., Näsholm, T. & Jämtgård, S. Swedish forest growth decline: a consequence of climate warming? For. Ecol. Manag. 565, 122052 (2024).


Google Scholar
 

Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manag. 18, 15 (2023). This study shows that the EU forest sink is quickly developing away from the EU climate targets.


Google Scholar
 

Gensior, A., Drexler, S., Fuß, R., Stümer, W. & Rüter, S. Emissions of Greenhouse Gases from Land Use, Land-use Change and forestry (LULUCF) (Thünen Institute, 2025).

Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022). This study shows a diminishing forest resilience to disturbance, critical for shaping land-based climate-mitigation strategies.

CAS 

Google Scholar
 

Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081 (2021).

CAS 

Google Scholar
 

Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020). This study provides evidence that drought is an important driver of tree mortality at the European scale.

CAS 

Google Scholar
 

Forzieri, G. et al. Ecosystem heterogeneity is key to limiting the increasing climate-driven risks to European forests. One Earth 7, 2149–2164 (2024).


Google Scholar
 

Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

CAS 

Google Scholar
 

Turubanova, S. et al. Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive. Remote Sens. Environ. 298, 113797 (2023).


Google Scholar
 

Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).


Google Scholar
 

Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).

CAS 

Google Scholar
 

Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).

CAS 

Google Scholar
 

Vilén, T. et al. Reconstructed forest age structure in Europe 1950–2010. For. Ecol. Manag. 286, 203–218 (2012).


Google Scholar
 

Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013). This article shows the first signs of saturation of the forest sink in Europe and identifies the causes.

CAS 

Google Scholar
 

Lerink, B. J. W. et al. How much wood can we expect from European forests in the near future? Forestry 96, 434–447 (2023).


Google Scholar
 

Camia A. et al. The Use of Woody Biomass for Energy Purposes in the EU (2021).

Hlásny, T. et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165 (2021).


Google Scholar
 

Dosio, A., Spinoni, J. & Migliavacca, M. Record-breaking and unprecedented compound hot and dry summers in Europe under different emission scenarios. Environ. Res. Clim. 2, 045009 (2023).


Google Scholar
 

Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).


Google Scholar
 

Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). This paper shows continental evidence of the reduction of primary production in response to the 2003 heatwave and drought.

CAS 

Google Scholar
 

Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). This article reports on the importance of deep learning and hybrid modelling for advancing in Earth system science.

CAS 

Google Scholar
 

Sippel, S. et al. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environ. Res. Lett. 12, 075006 (2017).


Google Scholar
 

van der Woude, A. M. et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 14, 6218 (2023).


Google Scholar
 

El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. npj Clim. Atmos. Sci. 7, 30 (2024).


Google Scholar
 

Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).


Google Scholar
 

European Climate Risk Assessment (EEA, 2024).

Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).

CAS 

Google Scholar
 

Mayer, M. et al. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020). This paper provides a complete review on the effects of forest management on soil organic carbon.


Google Scholar
 

Wang, M. et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 14, 98–105 (2024).

CAS 

Google Scholar
 

Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sustain. Agric. Environ. 3, e212108 (2024).


Google Scholar
 

Gren, I.-M. & Aklilu, A. Z. Policy design for forest carbon sequestration: a review of the literature. For. Policy Econ. 70, 128–136 (2016).


Google Scholar
 

Bowditch, E. et al. Application of climate-smart forestry—forest manager response to the relevance of European definition and indicators. Trees For. People 9, 100313 (2022).


Google Scholar
 

Buma, B. et al. Expert review of the science underlying nature-based climate solutions. Nat. Clim. Change 14, 402–406 (2024).


Google Scholar
 

Novick, K. A. et al. We need a solid scientific basis for nature-based climate solutions in the United States. Proc. Natl Acad. Sci. USA 121, e2318505121 (2024).

CAS 

Google Scholar
 

Brandt, M. et al. High-resolution sensors and deep learning models for tree resource monitoring. Nat. Rev. Electr. Eng. https://doi.org/10.1038/s44287-024-00116-8 (2024).

Viana-Soto, A. & Senf, C. The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive. Earth Syst. Sci. Data Discuss. 2024, 1–42 (2024). The latest continental-scale characterization of Europe’s forest disturbance regimes, disturbance agents and their changes over time.


Google Scholar
 

Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).


Google Scholar
 

Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).


Google Scholar
 

Ceccherini, G. et al. Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Commun. Earth Environ. 4, 97 (2023).


Google Scholar
 

Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) LiDAR mission. Remote Sens. Environ. 270, 112845 (2022).


Google Scholar
 

Miettinen, J. et al. Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling. Int. J. Remote Sens. 42, 9467–9489 (2021).


Google Scholar
 

Santoro, M., Cartus, O. & Fransson, J. E. S. Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations. Remote Sens. Environ. 270, 112846 (2022).


Google Scholar
 

Demol, M. et al. Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions. Methods Ecol. Evol. 13, 1628–1639 (2022).


Google Scholar
 

Senf, C. & Seidl, R. Storm and fire disturbances in Europe: distribution and trends. Glob. Change Biol. 27, 3605–3619 (2021).

CAS 

Google Scholar
 

Network, I. T. M. Towards a global understanding of tree mortality. New Phytol.https://doi.org/10.1111/nph.20407 (2025). A recent review on the research needed to better monitor and understand tree mortality.

Forzieri, G. et al. The Database of European Forest Insect and Disease Disturbances: DEFID2. Glob. Change Biol. 29, 6040–6065 (2023).

CAS 

Google Scholar
 

Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).


Google Scholar
 

Schiefer, F. et al. UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series. ISPRS J. Photogramm. Remote Sens. 8, 100034 (2023).


Google Scholar
 

Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).


Google Scholar
 

Torresani, M. et al. Reviewing the spectral variation hypothesis: twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecol. Inform. 82, 102702 (2024).


Google Scholar
 

Pacheco-Labrador, J. et al. Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sens. Environ. 280, 113170 (2022).


Google Scholar
 

de Conto, T., Armston, J. & Dubayah, R. Characterizing the structural complexity of the Earth’s forests with spaceborne lidar. Nat. Commun. 15, 8116 (2024).


Google Scholar
 

Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B. & Hostert, P. National tree species mapping using Sentinel-1/2 time series and German National Forest Inventory data. Remote Sens. Environ. 304, 114069 (2024).


Google Scholar
 

Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).


Google Scholar
 

Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).


Google Scholar
 

Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning. PeerJ 10, e13728 (2022).


Google Scholar
 

Santoro, M. et al. Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sens. Environ. 279, 113114 (2022).


Google Scholar
 

Duncanson, L. et al. Spatial resolution for forest carbon maps. Science 387, 370–371 (2025). Potentials and limitations of forest biomass and carbon maps, and the interplay between uncertainty and the spatial resolution of the maps.

CAS 

Google Scholar
 

Schwartz, M. et al. FORMS: forest multiple source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach. Earth Syst. Sci. Data 15, 4927–4945 (2023).


Google Scholar
 

Ferretti, M. et al. Advancing forest inventorying and monitoring. Ann. Forest Sci. 81, 6 (2024).


Google Scholar
 

Calders, K. et al. Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol. Solut. Evid. 3, e12197 (2022).


Google Scholar
 

Gessler, A. et al. Finding the balance between open access to forest data while safeguarding the integrity of National Forest Inventory-derived information. New Phytol. 242, 344–346 (2024). The article discusses the need to access private forest data to improve forest monitoring.


Google Scholar
 

Päivinen, R. et al. Ensure forest-data integrity for climate change studies. Nat. Clim. Change 13, 495–496 (2023).


Google Scholar
 

Schadauer, K. et al. Access to exact National Forest Inventory plot locations must be carefully evaluated. New Phytol. 242, 347–350 (2024).


Google Scholar
 

Kairouz, P. et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1–210 (2021).


Google Scholar
 

Schlegel, M., Scheliga, D., Sattler, K.-U., Seeland, M. & Mäder, P. Collaboration management for federated learning. In IEEE 40th Int. Conf. Data Engineering Workshops (ICDEW), 291–300 (2024).

Bonan, G. B. et al. Reimagining Earth in the Earth system. J. Adv. Model. Earth Syst. 16, e2023MS004017 (2024).


Google Scholar
 

Scheel, M., Lindeskog, M., Smith, B., Suvanto, S. & Pugh, T. A. M. Increased Central European forest mortality explained by higher harvest rates driven by enhanced productivity. Environ. Res. Lett. 17, 114007 (2022).


Google Scholar
 

Marie, G. et al. Simulating bark beetle outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r7791. EGUsphere 2023, 1–35 (2023).


Google Scholar
 

Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).


Google Scholar
 

Marie, G. et al. Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627. Geosci. Model Dev. 17, 8023–8047 (2024).


Google Scholar
 

Kautz, M., Anthoni, P., Meddens, A. J. H., Pugh, T. A. M. & Arneth, A. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Glob. Change Biol. 24, 2079–2092 (2018).


Google Scholar
 

Hanbury-Brown, A. R., Powell, T. L., Muller-Landau, H. C., Wright, S. J. & Kueppers, L. M. Simulating environmentally-sensitive tree recruitment in vegetation demographic models. New Phytol. 235, 78–93 (2022).


Google Scholar
 

Buotte, P. C. et al. Capturing functional strategies and compositional dynamics in vegetation demographic models. Biogeosciences 18, 4473–4490 (2021).

CAS 

Google Scholar
 

Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. & Grassi, G. The European forest carbon budget under future climate conditions and current management practices. Biogeosciences 19, 3263–3284 (2022).


Google Scholar
 

Rammer, W. et al. The individual-based forest landscape and disturbance model iLand: overview, progress, and outlook. Ecol. Model. 495, 110785 (2024).


Google Scholar
 

Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).


Google Scholar
 

Nelson, J. A. et al. X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. EGUsphere 2024, 1–51 (2024).


Google Scholar
 

Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

CAS 

Google Scholar
 

Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).


Google Scholar
 

Son, R. et al. Integration of a deep-learning-based fire model into a global land surface model. J. Adv. Model. Earth Syst. 16, e2023MS003710 (2024).


Google Scholar
 

ElGhawi, R. et al. Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039 (2023).


Google Scholar
 

Prapas, I. et al. TeleViT: teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting. Proc. IEEE/CVF Int. Conf. Computer Vision, 3754–3759 (2023).

Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).


Google Scholar
 

Seneviratne, S. et al. Weather and Climate Extreme Events in a Changing Climate (Cambridge Univ. Press, 2021).

Suarez-Gutierrez, L., Müller, W. A. & Marotzke, J. Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly. Commun. Earth Environ. 4, 415 (2023).


Google Scholar
 

Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).


Google Scholar
 

Dosio, A., Migliavacca, M. & Maraun, D. How fast is climate changing? One generation is sufficient for unfamiliar heatwave characteristics to emerge in Europe. Climatic Change 178, 26 (2025).


Google Scholar
 

Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).


Google Scholar
 

Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018). A modelling study that concludes the need to be cautious when envisioning the use of forest for climate mitigation.

CAS 

Google Scholar
 

Layritz, L. S. et al. Disentangling future effects of climate change and forest disturbance on vegetation composition and land-surface properties of the boreal forest. EGUsphere 2024, 1–36 (2024).


Google Scholar
 

Suvanto, S. et al. Understanding Europe’s forest harvesting regimes. Earths Future 13, e2024EF005225 (2025).


Google Scholar
 

Seidl, R. & Senf, C. Changes in planned and unplanned canopy openings are linked in Europe’s forests. Nat. Commun. 15, 4741 (2024).

CAS 

Google Scholar
 

Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).


Google Scholar
 

Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 15, e12829 (2022).


Google Scholar
 

Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).

CAS 

Google Scholar
 

Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).

CAS 

Google Scholar
 

Wessely, J. et al. A climate-induced tree species bottleneck for forest management in Europe. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02406-8 (2024). Climate change is reducing silviculture options and may limit the viability of creating new mixed forest owing to the loss of climate-compatible tree species.

del Campo, A. D. et al. Assessing reforestation failure at the project scale: the margin for technical improvement under harsh conditions. A case study in a Mediterranean dryland. Sci. Total Environ. 796, 148952 (2021).


Google Scholar
 

Mauri, A. et al. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Change 80, 102676 (2023).


Google Scholar
 

Mahecha, M. D. et al. Biodiversity and climate extremes: known interactions and research gaps. Earths Future 12, e2023EF003963 (2024). The article discusses the importance of improving understanding of the role of biodiversity to buffer climate extremes.


Google Scholar
 

Mahecha, M. D. et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 612, 30–32 (2022).


Google Scholar
 

Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).


Google Scholar
 

Müller, J. et al. Enhancing the structural diversity between forest patches—a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).


Google Scholar
 

Jactel, H. et al. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 3, 223–243 (2017).


Google Scholar
 

Vangi, E. et al. Stand age diversity (and more than climate change) affects forests’ resilience and stability, although unevenly. J. Environ. Manag. 366, 121822 (2024).

CAS 

Google Scholar
 

Mäkelä, A. et al. Effect of forest management choices on carbon sequestration and biodiversity at national scale. Ambio 52, 1737–1756 (2023).


Google Scholar
 

Blattert, C. et al. Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity. Commun. Earth Environ. 4, 119 (2023).


Google Scholar
 

Leng, Y. et al. Forest aging limits future carbon sink in China. One Earth 7, 822–834 (2024).


Google Scholar
 

Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).


Google Scholar
 

Pan, Y., Birdsey, R. A. & Phillips, O. L. New pathways for reducing global illegal logging. For. Ecol. Manag. 568, 122114 (2024).


Google Scholar
 

Felton, A. et al. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio 46, 324–334 (2017).

CAS 

Google Scholar
 

Himes, A., Betts, M., Messier, C. & Seymour, R. Perspectives: thirty years of triad forestry, a critical clarification of theory and recommendations for implementation and testing. For. Ecol. Manag. 510, 120103 (2022).


Google Scholar
 

Vos, M. A. E. et al. The sustainability of timber and biomass harvest in perspective of forest nutrient uptake and nutrient stocks. For. Ecol. Manag. 530, 120791 (2023).


Google Scholar
 

Rougieux, P., Pilli, R., Blujdea, V., Mansuy, N. & Mubareka, S. B. Simulating Future Wood Consumption and the Impacts on Europe’s Forest Sink to 2070 (2024).

Soimakallio, S. et al. Closing an open balance: the impact of increased tree harvest on forest carbon. Glob. Change Biol. Bioenergy 14, 989–1000 (2022).

CAS 

Google Scholar
 

Daigneault, A. et al. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Glob. Environ. Change 76, 102582 (2022).


Google Scholar
 

Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).

CAS 

Google Scholar
 

Rougieux, P. et al. Pruning the wood economy or intensifying harvest on a smaller area to increase the EU forest carbon sink. Preprint at SSRN https://doi.org/10.2139/ssrn.5027118 (2024).

Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).

CAS 

Google Scholar
 

Mansuy, N. et al. Reconciling the different uses and values of deadwood in the European Green Deal. One Earth 7, 1542–1558 (2024).


Google Scholar
 

Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024). A recent assessment of the world forest sink detailed by pool, regions and forest types.

CAS 

Google Scholar
 

Larjavaara, M. et al. Deadwood and Fire Risk in Europe (Publications Office of the European Union, 2023).

Dijkstra, J., Durrant, T., San-Miguel-Ayanz, J. & Veraverbeke, S. Anthropogenic and lightning fire incidence and burned area in Europer. Land 11, 651 (2022).


Google Scholar
 

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).


Google Scholar
 

Felton, A., Belyazid, S., Eggers, J., Nordström, E.-M. & Öhman, K. Climate change adaptation and mitigation strategies for production forests: trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe. Ambio 53, 1–16 (2024).


Google Scholar
 

Barnes, M. L. et al. A century of reforestation reduced anthropogenic warming in the eastern United States. Earths Future 12, e2023EF003663 (2024).


Google Scholar
 

Novick, K. A. & Barnes, M. L. A practical exploration of land cover impacts on surface and air temperature when they are most consequential. Environ. Res. Clim. 2, 025007 (2023).


Google Scholar
 

Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).


Google Scholar
 

Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).

CAS 

Google Scholar
 

Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

CAS 

Google Scholar
 

Li, W. et al. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 13, 3959 (2022).

CAS 

Google Scholar
 

Chen, Z., Wang, W., Cescatti, A. & Forzieri, G. Climate-driven vegetation greening further reduces water availability in drylands. Glob. Change Biol. 29, 1628–1647 (2023).

CAS 

Google Scholar
 

Graf, A. et al. Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects. Commun. Earth Environ. 4, 298 (2023).


Google Scholar
 

Stoy, P. C. et al. The global distribution of paired eddy covariance towers. Preprint at bioRxiv https://doi.org/10.1101/2023.03.03.530958 (2023).

Mubareka, S. et al. The role of scientists in EU forest-related policy in the Green Deal era. One Earth 5, 10–13 (2022).


Google Scholar
 

Migliavacca, M. & Ceccherini, G. Data and code for the reproducible workflow of Migliavacca et al., 2025. Securing the forest carbon sink for the European Union’s climate ambition. Zenodo https://doi.org/10.5281/zenodo.14900132 (2025).