Sebé-Pedrós, A. et al. The dynamic regulatory genome of capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berná, L. & Alvarez-Valin, F. Evolutionary genomics of fast evolving tunicates. Genome Biol. Evol. 6, 1724–1738 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moriyama, Y. & Koshiba-Takeuchi, K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings Funct. Genomics 17, 329–338 (2018).

Article 

Google Scholar
 

Martín-Durán, J. M. et al. Conservative route to genome compaction in a miniature annelid. Nat. Ecol. Evol. 5, 231–242 (2021).

Article 
PubMed 

Google Scholar
 

Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zimmermann, B. et al. Topological structures and syntenic conservation in sea anemone genomes. Nat. Commun. 14, 8270 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

Article 

Google Scholar
 

Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pérez-Posada, A. et al. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02562-x (2024).

Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Acemel, R. D. & Lupiáñez, D. G. Evolution of 3D chromatin organization at different scales. Curr. Opin. Genet. Dev. 78, 102019 (2023).

Article 
PubMed 

Google Scholar
 

Irimia, M. & Maeso, I. in Old Questions and Young Approaches to Animal Evolution (eds Martín-Durán, J. M. & Vellutini, B. C.) 175–207 (Springer International Publishing, 2019).

Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

Article 
PubMed 

Google Scholar
 

Wong, E. S. et al. Deep conservation of the enhancer regulatory code in animals. Science 370, eaax8137 (2020).

Article 
PubMed 

Google Scholar
 

Kim, I. V. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature https://doi.org/10.1038/s41586-025-08960-w (2025).

Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

Article 
PubMed 

Google Scholar
 

Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14 (2019).

Article 
PubMed 

Google Scholar
 

Franke, M. et al. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat. Commun. 12, 5415 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cavalheiro, G. R. et al. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. https://doi.org/10.1126/sciadv.ade1085 (2023).

Kaushal, A. et al. CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nat. Commun. 12, 1011 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maeso, I. & Tena, J. J. Favorable genomic environments for cis-regulatory evolution: a novel theoretical framework. Semin. Cell Dev. Biol. 57, 2–10 (2016).

Article 
PubMed 

Google Scholar
 

Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet. 9, e1003748 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Villar, D., Flicek, P. & Odom, D. T. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15, 221–233 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Glazov, E. A., Pheasant, M., McGraw, E. A., Bejerano, G. & Mattick, J. S. Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Res. 15, 800–808 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

He, Q. et al. High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat. Genet. 43, 414–420 (2011).

Article 
PubMed 

Google Scholar
 

Tan, G., Polychronopoulos, D. & Lenhard, B. CNEr: a toolkit for exploring extreme noncoding conservation. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006940 (2019).

Vavouri, T., Walter, K., Gilks, W. R., Lehner, B. & Elgar, G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol. 8, R15 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Clarke, S. L. et al. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet. 8, e1002852 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Frith, M. C. & Ni, S. DNA conserved in diverse animals since the Precambrian controls genes for embryonic development. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msad275 (2023).

Harmston, N., Baresic, A. & Lenhard, B. The mystery of extreme non-coding conservation. Philos. Trans. R. Soc. London, Ser. B 368, 20130021 (2013).

Article 
PubMed Central 

Google Scholar
 

Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejerano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

Article 
PubMed 

Google Scholar
 

Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

Article 
PubMed 

Google Scholar
 

Wang, J., Lee, A. P., Kodzius, R., Brenner, S. & Venkatesh, B. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor. Mol. Biol. Evol. 26, 487–490 (2009).

Article 
PubMed 

Google Scholar
 

Lee, A. P., Kerk, S. Y., Tan, Y. Y., Brenner, S. & Venkatesh, B. Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Mol. Biol. Evol. 28, 1205–1215 (2011).

Article 
PubMed 

Google Scholar
 

Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373–1384 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Najle, S. R. et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 186, 4676–4693.e29 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sea Urchin Genome Sequencing Consortium et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941–952 (2006).

Article 
PubMed Central 

Google Scholar
 

Simakov, O. et al. Hemichordate genomes and deuterostome origins. Nature 527, 459–465 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Conservation of bilaterian genome structure is the exception, not the rule. Genome Biol. 26, 247 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gildor, T., Hinman, V. & Ben-Tabou-De-Leon, S. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits. Int. J. Dev. Biol. 61, 347–356 (2017).

Article 
PubMed 

Google Scholar
 

Annunziata, R., Andrikou, C., Perillo, M., Cuomo, C. & Arnone, M. I. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 377, 445–458 (2019).

Article 
PubMed 

Google Scholar
 

Voronov, D. et al. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Development https://doi.org/10.1242/dev.202278 (2024).

Marlétaz, F. et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics 3, 100295 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Eno, C. C., Böttger, S. A. & Walker, C. W. Methods for karyotyping and for localization of developmentally relevant genes on the chromosomes of the purple sea urchin, Strongylocentrotus purpuratus. Biol. Bull. https://doi.org/10.1086/BBLv217n3p306 (2009).

Saotome, K. & Komatsu, M. Chromosomes of Japanese starfishes. Zool. Sci. 19, 1095–1103 (2002).

Article 

Google Scholar
 

Byrne, M. Life history diversity and evolution in the Asterinidae. Integr. Comp. Biol. 46, 243–254 (2006).

Article 
PubMed 

Google Scholar
 

Colombera, D. & Tagliaferri, F. The male chromosomes of five species of echinoderms together with some technical hints. Caryologia 39, 347–352 (2014).

Article 

Google Scholar
 

Thibaud-Nissen, F. et al. P8008 The NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).

Article 

Google Scholar
 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

Article 
PubMed 

Google Scholar
 

Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Huang, Z. et al. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc. Natl Acad. Sci. USA 120, e2201504120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Marlétaz, F. et al. The little skate genome and the evolutionary emergence of wing-like fins. Nature 616, 495–503 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10.e4 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vargas-Chávez, C. et al. An episodic burst of massive genomic rearrangements and the origin of non-marine annelids. Nat. Ecol. Evol. 9, 1263–1279 (2025).

Article 
PubMed 

Google Scholar
 

Wang, Y. et al. Chromosome-level genome assembly of the northern Pacific seastar Asterias amurensis. Sci. Data https://doi.org/10.1038/s41597-023-02688-w (2023).

Watanabe, K. et al. The crucial role of CTCF in mitotic progression during early development of sea urchin. Dev. Growth Differ. 65, 395–407 (2023).

Article 
PubMed 

Google Scholar
 

Pallarès-Albanell, J. et al. Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. Development https://doi.org/10.1242/dev.203017 (2024).

de-Leon, S. B.-T. & Davidson, E. H. Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc. Natl Acad. Sci. USA 107, 10103–10108 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nam, J., Dong, P., Tarpine, R., Istrail, S. & Davidson, E. H. Functional cis-regulatory genomics for systems biology. Proc. Natl Acad. Sci. USA 107, 3930–3935 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Oliveri, P., Walton, K. D., Davidson, E. H. & McClay, D. R. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133, 4173–4181 (2006).

Article 
PubMed 

Google Scholar
 

Hinman, V. F. & Davidson, E. H. Evolutionary plasticity of developmental gene regulatory network architecture. Proc. Natl Acad. Sci. USA 104, 19404–19409 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dylus, D. V. et al. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Evodevo 7, 2 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hore, T. A., Deakin, J. E. & Ja, M. G. The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000169 (2008).

Kadota, M., Yamaguchi, K., Hara, Y. & Kuraku, S. Early vertebrate origin of CTCFL, a CTCF paralog, revealed by proximity-guided shark genome scaffolding. Sci. Rep. 10, 14629 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mongiardino Koch, N. et al. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife https://doi.org/10.7554/eLife.72460 (2022).

Linchangco, G. V. Jr et al. The phylogeny of extant starfish (Asteroidea: Echinodermata) including Xyloplax, based on comparative transcriptomics. Mol. Phylogenet. Evol. 115, 161–170 (2017).

Article 
PubMed 

Google Scholar
 

Villier, L. et al. Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids. J. Syst. Palaeontol. 16, 395–415 (2018).

Article 

Google Scholar
 

Deline, B. et al. Evolution and development at the origin of a phylum. Curr. Biol. 30, 1672–1679.e3 (2020).

Article 
PubMed 

Google Scholar
 

Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic insights into animal evolution. Curr. Biol. 25, R876–R887 (2015).

Article 
PubMed 

Google Scholar
 

Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled?. Bioessays 39, 1–12 (2017).

Article 
PubMed 

Google Scholar
 

Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. 39, 730–732 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ksepka, D. T. et al. The fossil calibration database—a new resource for divergence dating. Syst. Biol. 64, 853–859 (2015).

Article 
PubMed 

Google Scholar
 

Sebé-Pedrós, A. & Ruiz-Trillo, I. Evolution and classification of the T-box transcription factor family. Curr. Top. Dev. Biol. 122, 1–26 (2017).

Article 
PubMed 

Google Scholar
 

Ben-Tabou de-Leon, S., Su, Y.-H., Lin, K.-T., Li, E. & Davidson, E. H. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev. Biol. 374, 245–254 (2013).

Article 
PubMed 

Google Scholar
 

Gross, J. M., Peterson, R. E., Wu, S.-Y. & McClay, D. R. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 130, 1989–1999 (2003).

Article 
PubMed 

Google Scholar
 

Valencia, J. E., Feuda, R., Mellott, D. O., Burke, R. D. & Peter, I. S. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol. 19, 257 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fresques, T. M. & Wessel, G. M. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development https://doi.org/10.1242/dev.155663 (2018).

Paganos, P., Voronov, D., Musser, J. M., Arendt, D. & Arnone, M. I. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife https://doi.org/10.7554/eLife.70416 (2021).

Meyer, A., Ku, C., Hatleberg, W. L., Telmer, C. A. & Hinman, V. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms. eLife https://doi.org/10.7554/eLife.80090 (2023).

Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Niu, L. et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 53, 1075–1087 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cui, M., Vielmas, E., Davidson, E. H. & Peter, I. S. Sequential response to multiple developmental network circuits encoded in an intronic cis-regulatory module of sea urchin hox11/13b. Cell Rep. 19, 364–374 (2017).

Article 
PubMed 

Google Scholar
 

Damle, S. & Davidson, E. H. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of S. purpuratus. Dev. Biol. 357, 505–517 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, P. Y., Nam, J. & Davidson, E. H. Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. Dev. Biol. 307, 434–445 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Livi, C. B. & Davidson, E. H. Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula. Gene Expr. Patterns 7, 1–7 (2007).

Article 
PubMed 

Google Scholar
 

Yuh, C.-H. et al. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev. Biol. 246, 148–161 (2002).

Article 
PubMed 

Google Scholar
 

Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

Article 
PubMed 

Google Scholar
 

Hu, H. et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 1, 1722–1730 (2017).

Article 
PubMed 

Google Scholar
 

Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morÿphologies through heterochrony. Development 1994, 135–142 (1994).

Article 

Google Scholar
 

Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buono, L. et al. Conservation of cis-regulatory syntax underlying deuterostome gastrulation. Cells https://doi.org/10.3390/cells13131121 (2024).

Skvortsova, K. et al. Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins. Sci. Adv. https://doi.org/10.1126/sciadv.abn2258 (2022).

Gonzalez, P., Hauck, Q. C. & Baxevanis, A. D. Conserved noncoding elements evolve around the same genes throughout metazoan evolution. Genome Biol. Evol. 16, evae052 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

Article 
PubMed 

Google Scholar
 

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Robinson, J. T. et al. Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst. 6, 256–258.e1 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2012).

Article 

Google Scholar
 

Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

Article 
PubMed 

Google Scholar
 

Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160–1166 (2017).

Article 

Google Scholar
 

Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).

Article 
PubMed Central 

Google Scholar
 

Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arshinoff, B. I. et al. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res. 50, D970–D979 (2022).

Article 
PubMed 

Google Scholar
 

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Magri, M. S. et al. Assaying chromatin accessibility using ATAC-Seq in invertebrate chordate embryos. Front Cell Dev. Biol. 7, 372 (2019).

Article 
PubMed 

Google Scholar
 

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

Article 

Google Scholar
 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ye, T. et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 39, e35 (2011).

Article 
PubMed 

Google Scholar
 

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods https://doi.org/10.1038/nmeth.3176 (2015).

Martínez-Redondo, G. I. et al. FANTASIA leverages language models to decode the functional dark proteome across the animal tree of life. Commun. Biol. 8, 1227 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology (Bioconductor, 2025); https://doi.org/10.18129/B9.bioc.topGO

Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xiong, A.-S. et al. PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 1, 791–797 (2006).

Article 
PubMed 

Google Scholar
 

Arnone, M. I., Dmochowski, I. J. & Gache, C. in Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches (eds Ettensohn, C. A. et al.) 621–652 (Academic Press, 2004).

Perillo, M., Paganos, P., Spurrell, M., Arnone, M. I. & Wessel, G. M. Methodology for whole mount and fluorescent RNA in situ hybridization in echinoderms: single, double, and beyond. Methods Mol. Biol. 2219, 195–216 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paganos, P. et al. FISH for all: a fast and efficient fluorescent hybridization (FISH) protocol for marine embryos and larvae. Front Physiol. 13, 878062 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Foley, S. Files for viewing multiple genome alignment of marine invertebrates from ‘Deep conservation of cis-regulatory elements and chromatin organization in echinoderms uncover ancestral regulatory features of animal genomes’. figshare https://doi.org/10.6084/m9.figshare.30506378 (2025).

Brasó-Vives, M. et al. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol. 23, 1–24 (2022).

Article 

Google Scholar
 

Saudemont, A. et al. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet. 6, e1001259 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar